The answer is 0.008 moles
Answer:
70.0°C
Explanation:
We are given;
- Amount of heat generated by propane as 104.6 kJ or 104600 Joules
- Mass of water is 500 g
- Initial temperature as 20.0 ° C
We are required to determine the final temperature of water;
Taking the initial temperature is x°C
We know that the specific heat of water is 4.18 J/g°C
Quantity of heat = Mass × specific heat × change in temperature
In this case;
Change in temp =(x-20)° C
Therefore;
104600 J = 500 g × 4.18 J/g°C × (x-20)
104600 J = 2090x -41800
146400 = 2090 x
x = 70.0479
=70.0 °C
Thus, the final temperature of water is 70.0°C
Answer:
1st Question: A
2nd Question: B
Explanation:
The 1st answer would be A because if a sample is at absolute zero then the sample is at its lowest temperature none of the molecules would be able to move, this is because lower temperature= lower kinetic energy.
The 2nd answer would be B because if a sample has more temperature it speeds up it has more temperature and more kinetic energy, meaning it would move faster because there is more temperature.
Answer:
Many emerging diseases arise when infectious agents in animals are passed to humans (referred to as zoonoses). As the human population expands in number and into new geographical regions, the possibility that humans will come into close contact with animal species that are potential hosts of an infectious agent increases.
Explanation:
Answer:

Explanation:
Ba(OH)₂ + 2HCl ⟶ BaCl₂ + H₂O
V/mL: 249
c/mol·L⁻¹: 0.0443 0.285
1. Calculate the moles of Ba(OH)₂

2. Calculate the moles of HCl
The molar ratio is 2 mol HCl:1 mol Ba(OH)₂

3. Calculate the volume of HCl
