Answer:
The answer is
<h2>270 m</h2>
Explanation:
To find the distance when given the velocity and time we use the formula
<h3>distance = velocity × time</h3>
From the question
velocity of the ball = 18 m/s
time = 15 s
So the distance is
distance = 18 × 15
We have the final answer as
<h3>270 m</h3>
Hope this helps you
Answer:
Electric current.
Explanation:
The energy result from electric current resulting from potential differences between terminals which form an Electric circuit. This energy could come from different sources like chemical, wind, light
An electric circuit is one where there is movement of electrons;this electrons acquire charge which is energy. The electrons flow due to a potential difference; you have heard water flows from a higher position to a lower one freely. The highest height is said to be at higher potential and the lower point low potential.
So it's the same with electrons.
The formular for energy on charge is Q= I × t where I is electric current and t is time.
Galileo Galilei was the first scientist to perform experiments in order to test his ideas. He was also the first astronomer to systematically observe the skies with a telescope.
:)
Here i state the conservation of energy rule and use that to justify my answer. I showed how to manipulate percentages to get the final answer of 11000J (2sf). Hope I'm right xx
Answer:
The value of change in internal l energy of the gas = 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.