You would use a object called The big dipper to find the closest space station.
Explanation:
We have,
Mass of a baseball is 0.147 kg
Initial velocity of the baseball is 44.5 m/s
The ball is moved in the opposite direction with a velocity of 55.5 m/s
It is required to find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Change in momentum,

Impulse = 14.7 kg-m/s
Therefore, the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat is 14.7 kg-m/s
Answer: Exercise Physiology
Explanation:
Answer:
17.1
Explanation:
The distance ahead, of the deer when it is sighted by the park ranger, d = 20 m
The initial speed with which the ranger was driving, u = 11.4 m/s
The acceleration rate with which the ranger slows down, a = (-)3.80 m/s² (For a vehicle slowing down, the acceleration is negative)
The distance required for the ranger to come to rest, s = Required
The kinematic equation of motion that can be used to find the distance the ranger's vehicle travels before coming to rest (the distance 's'), is given as follows;
v² = u² + 2·a·s
∴ s = (v² - u²)/(2·a)
Where;
v = The final velocity = 0 m/s (the vehicle comes to rest (stops))
Plugging in the values for 'v', 'u', and 'a', gives;
s = (0² - 11.4²)/(2 × -3.8) = 17.1
The distance the required for the ranger's vehicle to com to rest, s = 17.1 (meters).
Answer:
the index of refraction of the second medium is lower
Explanation:
take an exaple of a light ray from air to water that is optically denser the ray is refracted to the normal thus lowering its index of refraction