Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
Answer:
Explanation:
which is the final velocity minus the initial velocity in the numerator, and the change in time in the denominator. For us:
so
a = .92 m/s/s (NOT negative because you're speeding up)
I Think Its True My Dude Or Dudette
.
Hope this helps
.
Zane
Answer:
Net forces which pushes the window is 30342.78 N.
Explanation:
Given:
Dimension of the office window.
Length of the window =
m
Width of the window =
m
Area of the window = 
Difference in air pressure = Inside pressure - Outside pressure
=
atm =
atm
Conversion of the pressure in its SI unit.
⇒
atm =
Pa
⇒
atm =
Pa
We have to find the net force.
We know,
⇒ Pressure = Force/Area
⇒ 
⇒ 
⇒ Plugging the values.
⇒
⇒
Newton (N)
So,
The net forces which pushes the window is 30342.78 N.