A :-) for this question , we should apply
a = v - u by t
Given - u = 4.77 m/s
v = 23.5 m/s
t = 5.18 m/s
Solution -
a = v - u by t
a = 23.5 - 4.77
a = 28.27 m/s^2
.:. The acceleration is 28.27 m/s^2
Answer:
m = 9795.9 kg
Explanation:
v = 35 m/s
KE = 6,000,000 J
Plug those values into the following equation:

6,000,000 J = (1/2)(35^2)m
---> m = 9795.9 kg
Answer:
45 degrees
Explanation:
The textbooks say that the maximum range for projectile motion (with no air resistance) is 45 degrees.
I think true. I'm pretty sure, but check w/ others too.
Answer:
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Explanation:
Given data
Φ = 5.32 eV
to find out
the longest wavelength
solution
we know that
hf = k(maximum) +Ф ...............1
here we consider k(maximum ) will be zero because photon wavelength max when low photon energy
so hf = 0
and hc/ λ = +Ф
so λ = hc/Ф ................2
now put value hc = 1240 ev nm and Φ = 5.32 eV
so hc = 1240 / 5.32
hc = 233 nm
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm