Answer:
735N
Explanation:
Weight is a measurement of force.
F = Force
m = mass
a = acceleration
F = m*a
F = 75kg*9.8m/s²
F = 735N
Answer:
because they are the rocks that line the surface of our planet
Explanation:
We see sedimentary rocks more than other rock types because they are the rocks that line the surface of our planet.
Sedimentary rocks typically form the earth cover due to the way they are formed.
- These rocks are produced by the weathering, transportation and deposition of sediments within a basin.
- In this basin, the sediment is lithified and converted to sedimentary rocks.
- These processes are driven by the external heat engine
- Therefore, it is confined to the surface.
- Igneous and metamorphic rock's processes are confined to the subsurface.
Answer:The distance o the ramp that the car traveled is given by d=(1/2)at^2=(0.5)(3.96)(5.76)^2=65.69 meters. The horizontal component of this travel is 65.69*
Explanation:
Momentum is conserved when carts are collided on a slanting plane.
To find the answer, we need to know about the conversation of momentum.
<h3>What's the conversation of momentum?</h3>
- Conservation of linear momentum says the total momentum before the collision and after the collision remains the same.
- Mathematically, m1u1+m2u2 = m1v1+m2v2
<h3>How is the momentum conserved when collision occurs on a slanting plane?</h3>
- On a slanting plane, the velocity has two components,
- horizontal component
- horizontal component Vertical component
- So, its momentum has also similar two components.
- The momentum is conserved along horizontal direction and vertical direction separately.
Thus, we can conclude that the momentum is conserved when carts are collided on a slanting plane.
Learn more about the conversation of momentum here:
brainly.com/question/7538238
#SPJ4
Answer:
According to the Conservation of Momentum,
Momentum of the gun = momentum of the bullet
M(gun)×V(gun)=m(bullet)×v(bullet)
4kg × V = 0.3kg × 600m/s²
V = (0.3 × 600)/4 = 45 m/s
The recoil velocity on the gun is <em><u>45 m/s</u></em>
<h3><u>45 m/s</u> is the right answer.</h3>