A study occasionally the effect of anxiety (low vs. high) and stress (low vs. moderate vs. high) on test.
Everyone experiences anxiety occasionally, but persistent anxiety can reduce your quality of life. Though likely best known for altering behavior, worry can have negative effects on our physical health. Anxiety speeds up our heartbeat and breathing, concentrating blood flow to the parts of our brains that need it. You are getting ready for a challenging situation by having this extremely bodily reaction. Test performance may be impacted by anxiety. According to studies, pupils with low levels of test anxiety perform better on multiple-choice question (MCQ) exams than pupils with high levels of anxiety. Studies have occasionally that female students have greater levels of test anxiety than male students.
Learn more about anxiety here:
brainly.com/question/4913240
#SPJ4
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

Answer:
the velocity of the boats after the collision is 4.36 m/s.
Explanation:
Given;
mass of fish, m₁ = 800 kg
mass of boat, m₂ = 1400 kg
initial velocity of the fish, u₁ = 12 m/s
initial velocity of the boat, u₂ = 0
let the final velocity of the fish-boat after collision = v
Apply the principle of conservation of linear momentum for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
800 x 12 + 1400 x 0 = v(800 + 1400)
9600 = 2200v
v = 9600/2200
v = 4.36 m/s
Therefore, the velocity of the boats after the collision is 4.36 m/s.
Answer:
can you put on a clearer image this one is hard to see
Answer:
a) The centripetal acceleration of the car is 0.68 m/s²
b) The force that maintains circular motion is 940.03 N.
c) The minimum coefficient of static friction between the tires and the road is 0.069.
Explanation:
a) The centripetal acceleration of the car can be found using the following equation:

Where:
v: is the velocity of the car = 51.1 km/h
r: is the radius = 2.95x10² m

Hence, the centripetal acceleration of the car is 0.68 m/s².
b) The force that maintains circular motion is the centripetal force:

Where:
m: is the mass of the car
The mass is given by:

Where P is the weight of the car = 13561 N

Now, the centripetal force is:

Then, the force that maintains circular motion is 940.03 N.
c) Since the centripetal force is equal to the coefficient of static friction, this can be calculated as follows:



Therefore, the minimum coefficient of static friction between the tires and the road is 0.069.
I hope it helps you!