The solution for this problem is:
For 1st minimum, let m be equal to 1.
d = slit width
D = screen distance.
Θ = arcsin (m * lambda/ (d))
= 0.13934 rad, 7.9836 deg
y = D*tan (Θ)
y = 6.50 * tan (7.9836)
= 0.91161 m is the distance from the central maximum to the first-order minimum
Answer:

Explanation:
given,
mass of wheel(M) = 3 Kg
radius(r) = 35 cm
revolution (ω_i)= 800 rev/s
mass (m)= 1.1 Kg
I_{wheel} = Mr²
when mass attached at the edge
I' = Mr² + mr²
using conservation of angular momentum






Answer:
aral ka muna ng mabuti para maintindihan mo
Answer:
Explanation:
Its definitely an Attractive force since the two charges are Unlike.
From Coulombs Law
F=kq1q2/R²
Given
K=9x10^9
R=1m
q1=2C
q2=-1C
F=(9x10^9 x 2 x -1)/1²
F= - 1.8x10^10N. (Attractive).
Answer:
The quantity of electrons that flows past a given point is 3.0 C.
Explanation:
An electric current (I) is the ratio of the quantity of charges (Q) that flows through a point to the time taken (t).
i.e I = 
It is measured in Ampere's by the use of an ammeter in the laboratory. The quantity of charge that flow through a given point is measured in Coulombs, while time is measured in seconds.
Given that; I = 1.5A and t = 2s, find Q.
Q = It
= 1.5 × 2
= 3.0 C
The quantity of electrons that flows past a given point is 3.0 C.