To solve this problem we will start by defining the length of the shortest stick as 'x'. And the magnitude of the longest stick, according to the statement as
![x+2.93](https://tex.z-dn.net/?f=x%2B2.93)
Both cover a magnitude of 8.32 ft, therefore
![x +(x+2.97) = 8.32](https://tex.z-dn.net/?f=x%20%2B%28x%2B2.97%29%20%3D%208.32)
Now solving for x we have,
![x + (x + 2.93) = 8.32](https://tex.z-dn.net/?f=x%20%2B%20%28x%20%2B%202.93%29%20%3D%208.32)
![2x + 2.93 = 8.32](https://tex.z-dn.net/?f=2x%20%2B%202.93%20%3D%208.32)
![2x = 8.32 - 2.93](https://tex.z-dn.net/?f=2x%20%3D%208.32%20-%202.93)
![x = \frac{ 8.32 - 2.93}{2}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B%208.32%20-%202.93%7D%7B2%7D)
![x = 2.695 ft](https://tex.z-dn.net/?f=x%20%3D%202.695%20ft)
Therefore the shorter stick is 2.695ft long.
The Doppler Effect provides the equation for the
calculation of apparent frequency:
f=fo[vo/(vo-vr)]
where:<span>
vo=source wave velocity
vr=relative speed between source and observer
f=apparent frequency
fo=source frequency </span>
<span>
The velocity of the doppler wave is
v=λf</span>
where λ is light wavelength. Hence,
v=λfo[vo/(vo-vr)]
Based on the equation, we can say that wave
velocity will always be defined by one and only one wavelength.
Therefore the answer is letter C.
<span> </span>
Answer:x=23.4 cm
Explanation:
Given
mass of block ![m=0.5 kg](https://tex.z-dn.net/?f=m%3D0.5%20kg)
inclination ![\theta =30](https://tex.z-dn.net/?f=%5Ctheta%20%3D30)
coefficient of static friction ![\mu =0.35](https://tex.z-dn.net/?f=%5Cmu%20%3D0.35)
coefficient of kinetic friction ![\mu _k=0.25](https://tex.z-dn.net/?f=%5Cmu%20_k%3D0.25)
distance traveled ![d=77.3 cm](https://tex.z-dn.net/?f=d%3D77.3%20cm)
spring constant ![k=35 N/m](https://tex.z-dn.net/?f=k%3D35%20N%2Fm%20)
work done by gravity+work done by friction=Energy stored in Spring
![mg\sin \theta d-\mu _kmg\cos \theta d=\frac{kx^2}{2}](https://tex.z-dn.net/?f=mg%5Csin%20%5Ctheta%20d-%5Cmu%20_kmg%5Ccos%20%5Ctheta%20d%3D%5Cfrac%7Bkx%5E2%7D%7B2%7D)
![mgd\left ( \sin \theta -\mu _k\cos \theta \right )=\frac{kx^2}{2}](https://tex.z-dn.net/?f=mgd%5Cleft%20%28%20%5Csin%20%5Ctheta%20-%5Cmu%20_k%5Ccos%20%5Ctheta%20%5Cright%20%29%3D%5Cfrac%7Bkx%5E2%7D%7B2%7D)
![0.5\times 9.8\times 0.773\left ( \sin 30-0.25\cos 30\right )=\frac{35\times x^2}{2}](https://tex.z-dn.net/?f=0.5%5Ctimes%209.8%5Ctimes%200.773%5Cleft%20%28%20%5Csin%2030-0.25%5Ccos%2030%5Cright%20%29%3D%5Cfrac%7B35%5Ctimes%20x%5E2%7D%7B2%7D)
![x=\sqrt{\frac{2\times 0.5\times 9.8\times 0.773(\sin 30-0.25\times \cos 30)}{35}}](https://tex.z-dn.net/?f=x%3D%5Csqrt%7B%5Cfrac%7B2%5Ctimes%200.5%5Ctimes%209.8%5Ctimes%200.773%28%5Csin%2030-0.25%5Ctimes%20%5Ccos%2030%29%7D%7B35%7D%7D)
![x=0.234 m](https://tex.z-dn.net/?f=x%3D0.234%20m)
![x=23.4 cm](https://tex.z-dn.net/?f=x%3D23.4%20cm)
The central angle of a circle is 360° or 2π radians.
Therefore
1 radian = (360 degrees)/(2π radians) = 180/π degrees/radian.
4 radians = (4 radians)*(180/π degrees/radian) = 229.18 degrees.
Answer: C. 229.2°
A bell or a siren or a ring in somewhere