I got you
Explanation:
normal force = 400 g cos 35
friction force up slope = .6 (400 g) cos 35
weight component down slope = 400 g sin 35
400 a = 400 g sin 35 - .6 (400 g cos 35)
a = g (sin 35 - .6 cos 35) = .082 g
I hope this helps you
Answer:
The correct option is;
The graduate cylinder with more water has more thermal energy because it is holding more water molecules
Explanation:
Given that the thermal energy of the system is the energy possessed by the system by virtue of the increased motion of the particles by virtue of a transfer of heat, when the content of the system is heated
The thermal energy, Q is given by the following equation;
Q = Mass, m × The specific heat capacity, C × The change in temperature, ΔT
Given that the graduated cylinder with more water has more mass and therefore, more water molecules, than the cylinder with less water, the cylinder with more water has more thermal energy.
Answer:
C. strike-slip fault
Explanation:
The scientist must have observed a strike- slip fault.
A fault is an evidence of brittle deformation of the crust in the presence of applied stress on earth materials. Here, the earth material is the rock subjected to tension.
Where a fault occurs, there must have been movement between two blocks of rocks. The direction of movement helps us to delineate the fault type.
- When two blocks moves past each other horizontally, it is a strike-slip fault like rubbing your palms together.
- When a block moves in the direction of the dip, it forms a dip-slip fault which results in a fault-block mountain characterized by graben and horst systems.
Option A, Plateau is a table landform usually a mountain with flat peak.
Option B is a bowl shaped stratigraphic pattern in which the youngest sequence is at the core of the strata or a fold.
So, the most fitting option is C, a strike-slip fault.
Taking right movement to be positive means leftward movement is negative.
Hence we have a deceleration of



Using this 'suvat' equation

we can determine the initial velocity



Hence the initial velocity is 13.0 meters per seconds
Convert 220 lb to kg.
220/2.2 = 100kg.
W = Fd (In this case, F is the weight)
W = (100)(2)
W = 200J
P = W/t
P = (200)/(1.2)
P = 166.67W