Answer:
The change in kinetic energy (KE) of the car is more in the second case.
Explanation:
Let the mass of the car = m
initial velocity of the first case, u = 22 km/h = 6.11 m/s
final velocity of the first case, v = 32 km/h = 8.89 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(8.89² - 6.11²)
= 20.85m J
initial velocity of the second case, u = 32 km/h = 8.89 m/s
final velocity of the second case, v = 42 km/h = 11.67 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(11.67² - 8.89²)
= 28.58m J
The change in kinetic energy (KE) of the car is more in the second case.
R = ρ L/A. R= resistance, ρ= resistivity, L= length of the conductor. A = area of the conductor. Resistance is directly proportional to the length of the conductor. So if length of the conductor is decreased, resistance will also decrease. Hence A is the correct option
Answer
given,
V = 2 L
the left is an ideal gas at P = 100 k Pa and T = 500 K
mass is constant


Pressure is same because it's not changing due to process






m = 1.39 x 10⁻³ Kg


Explanation:
Below is an attachment containing the solution.