Answer: 3 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum: during the collision between the two balls, the total momentum of the system before the collision and after the collision must be conserved:

The total momentum before the collision is given only by the cue ball, since the solid ball is initially at rest, therefore

So, the final total momentum will also be

And the total momentum after the collision is given only by the solid ball, since the cue ball is now at rest, therefore:

from which we find the velocity of the solid ball

The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Cadences.
These cadences are the resulting tensions that chords release from their resting points. This movement is classified from a unstable chord progression to a stable one. Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Barium cation has +2 charge and oxide anion has −2 charge
Answer:
This is false becuase different object weigh different
Thank you!
Explanation: