Answer:
b. increasing the number of turns per unit length on the solenoid
e. increasing the current in the solenoid
Explanation:
As we know that energy density depends on the strength of the magnetic field. The magnetic field strength depends on the no of turns of the solenoid and the current passing through it. The greater the number of turns per unit length, greater the current passing through it, more stronger the magnetic field is. As
B = μ₀nI
n = no of turns
I = current through the wire
So the right options are
b. increasing the number of turns per unit length on the solenoid
e. increasing the current in the solenoid
consider the motion of projectile A in vertical direction :
v₀ = initial velocity of projectile A in vertical direction = 0 m/s (since the projectile was launched horizontally)
a = acceleration of the projectile = g = acceleration due to gravity = 9.8 m/s²
t = time of travel for projectile A = 3.0 seconds
Y = vertical displacement of projectile A = height of the cliff = h = ?
using the kinematics equation along the vertical direction as
Y = v₀ t + (0.5) a t²
h = (0) (3.0) + (0.5) (9.8) (3.0)²
h = 44.1 m
An object's momentum is the product of its mass and its velocity:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
p = -80kg×m/s
m = 8kg
Plug in these values and solve for v:
-80 = 8v
v = -10m/s
Choice D
Answer:
50 cm is equivalent to 19,6850393701 inches.
Explanation:
A meter has 100 centimeters. 100 millimeters make one centimeter. The centimeter can be written as cm. While calculating the surface area of an object, the unit of measurement becomes cm2.
At critical temperature, the resistivity of the superconductor
B. It suddenly drops to zero
Explanation:
Materials can be classified into three different types depending on their resistance:
- Conductors: these materials have generally low resistance and allow electricity to pass through easily. The resistance of a conductor increases linearly with the temperature
- Insulators: these materials do not allow electricity to pass through - so they have very high resistance
- Semi-conductors: these are materials that are insulators are room temperature, however they becomes conductors when heated. Therefore, the resistance of a semiconductor decreases when the temperature increases
- Superconductors: these are special materials that are normally conductors; however, at very low temperatures (we are talking about temperature very near to 0 K), their resistance becomes suddenly zero.
Therefore, the correct answer is:
B. It suddenly drops to zero
Learn more about current and resistance:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly