1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
3 years ago
6

∈⊂↑⇄↓∵⇔,,,,,,,∵∵∵∵∵∵∵∵∴∴∴∴∴∴∴∴

Engineering
2 answers:
larisa86 [58]3 years ago
6 0

Answer:

?

Explanation:

?

Over [174]3 years ago
4 0

Answer:

8r7njxndjancxjqnd8h2238

Explanation:

You might be interested in
Before you calculate the moment capacity for a steel beam, you have to determine the classification of beam.
kirill [66]

Answer:

True

Explanation:

True - because different classification of steel beam have different yield strength.

The moment capacity for a steel beam is given by;

M = Mn / Ωₙ

where;

M - the maximum moment acting on the beam

Ωₙ - is the Safety Factor for Elements in Bending = 1.67

Mn - nominal moment of the steel, given as

M_n = Z_x *f_y

where;

Zₓ - the Plastic Section Modulus in the x or strong axis.

f_y - is the Yield Strength of the Steel (A36W, A46 W or A50W)

A36W = 36 ksi

A46 W = 46 ksi

A50W = 50 ksi

Thus, before you calculate the moment capacity for a steel beam, you have to determine the classification of beam, for the yield strength of the steel beam.

6 0
4 years ago
Cooling water for a chemical plant must be pumped from a river 2500 ft from the plant site. Preliminary design cans for a flow o
Vesna [10]

Answer:

The power cost savings for the 8 inches pipe offsets the increased cost for the pipe therefore to save costs the 8-inch pipe should be used

Explanation:

The given parameters in the question are;

The distance of the river from the the site, d = 2,500 ft.

The planned flow rate = 600 gal/min

The diameter of the pipe, d = 6-in.

The pipe material = Steel

The cost of pumping = 3 cents per kilowatt-hour

The Bernoulli's equation is presented as follows;

\dfrac{P_a}{\rho} + g\cdot Z_a + \dfrac{V^2_a}{2} + \eta\cdot W_p = \dfrac{P_b}{\rho} + g\cdot Z_b + \dfrac{V^2_b}{2} +h_f +W_m

{P_a} = {P_b} = Atmospheric \ pressure

Z_a  =  Z_b

Vₐ - 0 m/s (The river is taken as an infinite source)

W_m = 0

The head loss in 6 inches steel pipe of at flow rate of 600 gal/min = 1.19 psi/100 ft

Therefore; h_f = 1.19 × 2500/100 = 29.75 psi

\eta\cdot W_p = \dfrac{V^2_b}{2} +h_f

V_b = Q/A_b = 600 gal/min/(π·(6 in.)²/4) = 6.80829479 ft./s

V_b ≈ 6.81 ft./s

The pressure of the pump = P =  62.4 lb/ft³× (6.81 ft./s)²/2 + 29.75 psi ≈ 30.06 psi

The power of the pump = Q·P ≈ 30.06 psi × 600 gal/min = 7,845.50835 W

The power consumed per hour = 7,845.50835  × 60  × 60 W

The cost = 28,243.8301 kW × 3  = $847.31  per hour

Annual cost =  $847.31 × 8766 = $7,427,519.46

Pipe  cost = $15/ft × 2,500 ft = $37,500

Annual charges = 20% × Installed cost = 0.2 × $37,500 = $7,500

Total cost = $37,500 + $7,500 + $7,427,519.46 = $7,475,519.46

For the 8-in pipe, we have;

V_b = Q/A_b = 600 gal/min/(π·(8 in.)²/4) = 3.83 ft./s

h_f = 1.17 ft/100 feet

Total head loss = (2,500 ft/100 ft) × 1.17 ft. = 29.25 ft.

h_p = \dfrac{V^2_b}{2 \cdot g} +h_f

∴ h_p = (3.83 ft./s)²/(2 × 32.1740 ft/s²) + 29.25 ft. ≈ 29.5 ft.

The power of the pump = ρ·g·h × Q

Power of pump = 62.4 lb/ft³ × 32.1740 ft/s² × 29.5 ft.× 600 gal/min = 3,363.8047 W

The cost power consumed per annum = 3,363.8047 W × 60 × 60 × 3 × 8766 = $3,184,608.1

The Cost of the pipe = $20/ft × 2,500 ft. = $50,000

The total cost plus charges = $3,184,608.1 + $50,000 + $10,000 = $3,244,608.1

Therefore it is more affordable to use the 8-in pipe which provides substantial savings in power costs

8 0
3 years ago
To compute the energy used by a motor, multiply the power that it draws by the time of operation. Con- sider a motor that draws
ehidna [41]

Answer:

E=52000Hp.h

E=38724920Wh

E=1.028x10^11 ftlb

Explanation:

To solve this problem you must multiply the engine power by the time factor expressed in h / year, to find this value you must perform the conventional unit conversion procedure.

Finally, when you have the result Hp h / year you convert it to Ftlb and Wh

E=(12.5hp)(\frac{16h}{day} )(\frac{5 days}{week} )(\frac{52week}{year} )\\

E=52000Hp.h

E=52000Hp.h(\frac{744.71Wh}{Hp.h} )\\

E=38724920Wh

E=52000Hph(\frac{1977378.4  ft lb}{1Hph}

E=1.028x10^11 ftlb

3 0
3 years ago
Electric current originates from which part of an atom? *
yanalaym [24]

Answer: Electric current originates from positively charged protons negatively charged electrons of an atom.

Explanation:

The movement of ions (positive or negative) from one point to another is called electric current.

An atom has three sub-atomic particles. These are protons, neutrons and electrons.

Protons are positively charged, neutrons have no charge and electrons are negatively charged. Protons and neutrons reside inside the nucleus of an atom whereas electrons revolve around the nucleus.

So, protons and electrons are responsible for originating electric current form an atom as these are the charged particles.

Thus, we can conclude that electric current originates from positively charged protons negatively charged electrons of an atom.

3 0
3 years ago
Utility company power lines carry what kind of current?
vagabundo [1.1K]

Answer:

Alternating

Explanation:

8 0
3 years ago
Other questions:
  • A satellite orbits the Earth every 2 hours at an average distance from the Earth's centre of 8000km. (i) What is the average ang
    7·1 answer
  • You are to assess the biomechanics of a male’s arm using his bicep to hold a 20 kg object in his hand. The upper arm is perpendi
    5·1 answer
  • Coefficients of friction always involve how many materials? a. 0 b. 1 c. 2 d. 3
    15·1 answer
  • Assume you have a beam that is 15 feet long and carries a concentrated load of 900 pounds at a distance of 4 feet from R . React
    15·1 answer
  • 1. A gas pressure difference is applied to the legs of a U-tube manometer filled with a liquid with S = 1.5. The manometer readi
    9·1 answer
  • 8. Air at 25C, 100 kPa and air at 50C, 200 kPa at 1 to 1 volume ratio are mixed inside an adiabatic compressor to 55C, 500 kPa a
    15·1 answer
  • What is working fluid and mention five example of working fluid.​
    14·2 answers
  • Which of the following best describes maintenance?
    9·1 answer
  • Which of the following describes an exception that can be made to zoning ordinances?
    9·1 answer
  • Exercise 6.4.8: Sum Two Number
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!