By calculation, the diameter of the wire is 2.8 * 10^-3 m.
<h3>How do we obtain the length?</h3>
The following data are given in the question;
Mass of the wire = 1.0 g or 1 * 10^-3 Kg
Resistance = 0.5 ohm
Resistivity of copper = 1.7 * 10^-8 ohm meter
Density of copper = 8.92 * 10^3 Kg/m^3
V = m/d
But v = Al
Al = m/d
A = m/ld
Resistance = ρl/A
= ρl/m/ld =
l^2 = Rm/ρd
l = √ Rm/ρd
l = √0.5 * 1 * 10^-3 / 1.7 * 10^-8 * 8.92 * 10^3
l = 1.82 m
A = πr^2
Also;
A = m/ld
A = 1 * 10^-3 Kg / 1.82 m * 8.92 * 10^3 Kg/m^3
Area of the wire = 6.2 * 10^-5 m^2
r^2 = A/ π
r = √A/ π
r = √6.2 * 10^-5 m^2/3.142
r = 1.4 * 10^-3 m
Diameter = 2r = 2( 1.4 * 10^-3 m) = 2.8 * 10^-3 m
Learn more about resistivity:brainly.com/question/14547003
#SPJ4
Missing parts;
Suppose you wish to fabricate a uniform wire from 1.00g of copper. If the wire is to have a resistance of R=0.500Ω and all the copper is to be used, what must be (a) the length and (b) the diameter of this wire?
D When it is stretched ready to shoot at the wall
Answer:

Explanation:
Given:
- time taken by the sun to complete one revolution,

- radial distance of the sunspot,

<u>Therefore, angular speed of rotation of sun:</u>

<u>Now the tangential velocity of the sunspot can be given by:</u>



Battery based heaters use electric resistance heating, which uses a lot of current (electricity) to create the heat.
To perform an experiment to determine the force constant of a spring, you will need a stand with a boss and clamp, a spiral spring, a meter rule and different weights.
The setup is arranged as shown in the image attached. The natural length of the spring is first recorded. Different weights are added to the spring one after the other and the extension is recorded.
The weight is now plotted on the vertical axis and the extension is plotted on the horizontal axis. The slope of the graph is the force constant of the spring.
Learn more: brainly.com/question/10991960