Answer 2: 1 mole = 6.03 x 1023 particles. One mole of any element has a mass in grams that is equal to its atomic number, and has exactly 6.02 x 1023 atoms - however because the atoms of each element have different sizes and weights, then the volume that each one occupies is different.
Credits to
https://scienceline.ucsb.edu/getkey.php?key=274
<span>It generally does not mean that there is double the oxygen, but in this case there is double, because the subscript number tells how many atoms of that element are in a particle. In this case, there are two of the oxygen, hence the DI-oxide verbiage, and one of the carbon. When there is only one, it's MONOxide, to indicate only one atom.</span>
No, actually adawadawada and awawawaw usually addawadadaw but also awawawa so it’s a possibility but very rare.
They are all stable and have eight valence electrons
Answer:Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be. Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.
Explanation: