Wish I can help, but I don't take chemistry. :(
fly sry
Friction of the air, and the surface it is on
In general, The more valence electrons a metal has, the stronger its metallic bonds will be because Boron is a metalloid and is ionically bonded.it is too electronegative to release its valence electrons for metallic bonding.As a result, their valence electrons feel a stronger pull from the nucleus (a greater effective nuclear charge) and are less easily released for metallic bonding.
The mole fraction of HNO3 is 0.225
<u>Explanation:</u>
<u>1.</u>Given data
Density = 1.429 /ml
Mass% = 63.01 g HNO3 / 100g of solution
The mass of 63.01 g is in 100 / 1.142 /ml of solution
Or 63.01 g in 55.7 mL
Molarity = 15.39 moles / L
Mass of water in 100g = 100 - 63.01=36.99 g
So 63.01 grams in 36.99 grams of water
So mass of HNO3 in 1000grams of water = 63.01* x 1000 / 36.99 = 1703
Moles of HNO3 in 1000g = 1703 / 63.01 = 27.03 moles
Molality = 27.03 molal (mole / Kg)
Mole fraction = Mole of HN03 / Moles of water + mole of HNO3
Mole of water = 62/ 18 = 3.44
Moles of HNO3 = 63.01 / 63.01 = 1.000
Mole fraction = 1.000 / 3.44 + 1.000 = 0.225
The mole fraction of HNO3 is 0.225
Answer:

Explanation:
Hello!
In this case, since the enthalpy change for any process is computed by subtracting the enthalpy of the final state and the enthalpy of the initial state, for the given phase change, we subtract the enthalpy of the liquid (final state) and the enthalpy of the solid (initial state) considering this a melting process:

Which makes sense because this process absorbs energy.
Best regards!