Answer:
0.56L
Explanation:
This question requires the Ideal Gas Law:
where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the Ideal Gas constant, and T is the Temperature of the gas.
Since all of the answer choices are given in units of Liters, it will be convenient to use a value for R that contains "Liters" in its units:
Since the conditions are stated to be STP, we must remember that STP is Standard Temperature Pressure, which means
and 
Lastly, we must calculate the number of moles of
there are. Given 0.80g of
, we will need to convert with the molar mass of
. Noting that there are 2 oxygen atoms, we find the atomic mass of O from the periodic table (16g/mol) and multiply by 2: 
Thus, 
Isolating V in the Ideal Gas Law:


...substituting the known values, and simplifying...


So, 0.80g of
would occupy 0.56L at STP.
Answer:
The answer is IONIC BOND
Explanation:
Steroidogenic acute regulatory, (StAR) protein is a type of globular protein, which allows it act as an active catalyst on substrates. Because the substrates on which enzymes act usually have higher molecular weights of several hundred as compared to the enzymes, only a fraction of the enzyme's surface is in contact with the substrate. This region of contact called the <em>active site</em>, is as a result of the protein folding itself into a tertiary structure.
Once the correct substrate has bound at the active site of the enzyme, an enzyme-substrate complex is created. The substrate is usually held in the complex by combinations of electrical attraction, hydrophobic repulsion, or hydrogen bonding between and from the amino acid; the strongest of which is the ionic/electrostatic bonding due to larger amount of ionic "R" groups in the protein structure.
So whilst all these inter-molecular interactions are possible, the strongest would be <u>ionic bond.</u>
The answer to the molar mass of Ca(NO3)2 is gonna be C. 164.1 g/mol
<span>C. The stratosphere. About 90% of the ozone is in the stratosphere which begins about 8 miles above the Earth's surface.</span>
RCOOH + NaOH → RCOONa + H₂O (salt and water)
RCOOH + OH⁻ → RCOO⁻ + H₂O