Answer:
a. 4
Explanation:
Hi there!
The equation of kinetic energy (KE) is the following:
KE = 1/2 · m · v²
Where:
m = mass of the car.
v = speed of the car.
Let´s see how would be the equation if the velocity is doubled (2 · v)
KE2 = 1/2 · m · (2 · v)²
Distributing the exponent:
KE2 = 1/2 · m · 2² · v²
KE2 = 1/2 · m · 4 · v²
KE2 = 4 (1/2 · m · v²)
KE2 = 4KE
Doubling the velocity increased the kinetic energy by 4.
Answer:
The coefficient of rolling friction will be "0.011".
Explanation:
The given values are:
Initial speed,

then,


Distance,
s = 18.2 m
The acceleration of a bicycle will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
⇒ 
As we know,
⇒ 
and,
⇒ 
⇒ 
On substituting the values, we get
⇒ 
⇒ 
Answer:
Pressure,P=6×10^3Pa
Explanation:
The gas has an ideal gas behaviour and ideal gas equation
PV=NKT
T= V/N p/K ...eq1
Average transitional kinetic energy Ktr=1.8×10-23J
Ktr=3/2KT
T=2/3Ktr/K....eq2
Equating eq1 and 2
V/N p/K = 2/3Ktr/K
Cancelling K on both sides
P= 2/3N/V( Ktr)
Substituting the value of N/V and dividing by 10^-6 to convert cm^3 to m^3
P = 2/3 (5.0×10^20)/10^-6 × 1.8×10^-23
P= 6 ×10^3Pa
<span>The offspring will have the exact same genetic makeup as the parent. This is because there is no other parent involved other than the one parent.</span>
Answer:
20 years Light.
Explanation:
There's no practical explanation just math's.