First, you make a diagram of all the forces acting on the system. This is shown in the figure. We have to determine F1 and F4. Let's do a momentum balance. Momentum is conserved so the summation of all momentum is equal to zero. Momentum is force*distance.
To determine F1: (reference is F4, so F4=0)
∑Momentum = 0 = -F2 - F3 + F1
0 = (-4 kg)(9.81 m/s2)(0.25m)-(6kg)(9.81 m/s2)(0.5-0.3m)+F1(0.5-0.1m)
F1 = 53.96 N (left knife-edge)To determine F4: (reference is F1, so F1=0)
∑Momentum = 0 = -F2 - F3 + F4
0 = (-4 kg)(9.81 m/s2)(0.25m)-(6kg)(9.81 m/s2)(0.5-0.2m)+F4(0.5-0.1m)
F4 = 68.67 N (right knife-edge)
The answer is “Family”
Explanation- There are 18 numbered groups in the periodic table. The elements in a group have similar physical or chemical characteristics and some groups have a specific name, for example group 17 (the halogens).
Answer:
First Quarter and Third Quarter.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the Moon across to the Earth sphere.
Since gravity variates with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, seeing the image below, point A is closer to the Moon than point b, and at the same time the center of mass of the Earth will feel more attracted to the Moon than point B. Therefore, that creates a tidal bulge in point A and point B.
When the Sun and the Moon are alight with respect to the Earth, then the Sun tidal force contributes to the tidal force of the Moon over the Earth. That makes the high tides even higher (spring tides).
However, when the Sun is not in the same line than the Moon (the Moon is at 90° with respect to the Sun), then the low tides are higher and the high tides are lower. That scenario is known as neap tides.
Therefore, that happens when the Moon is at First Quarter and Third Quarter.
Answer:
Efficiency = StartFraction T Subscript h Baseline minus T Subscript C Baseline over T Subscript h Baseline EndFraction times 100. Efficiency equals T Subscript c Baseline minus T Subscript h Baseline over T Subscript h Baseline all times 100.
Answer: 
Explanation:
This problem can be solved by the following equation:

Where:
is the change in kinetic energy
is the electric potential difference
is the electric charge
Finding
:


Finally:
