Activation energy?
are there multiple choices?
Answer:
d = 329.81m
Explanation:
V_f = V_0+a*t
V_f = Velocity final
V_0 = Velocity initial
a = acceleration
t = time
V_f = (0m/s)+(9.81m/s²)*(8.2s)
V_f = 80.442m/s
d = ((V_f-V_0)/2)*t
d = distance
d = ((80.442m/s-0m/s)/2)*(8.2s)
d = 329.81m
Answer:
Mass.
Explanation:
I took the quiz and got the answer right
Answer:
2.82 s
Explanation:
The ball will be subject to the acceleration of gravity which can be considered constant. Therefore we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
Y0 is the starting position, 2.3 m in this case.
Vy0 is the starting speed, 13 m/s.
a will be the acceleration of gravity, -9.81 m/s^2, negative because it points down.
Y(t) = 2.3 + 13 * t - 1/2 * 9.81 * t^2
It will reach the ground when Y(t) = 0
0 = 2.3 + 13 * t - 1/2 * 9.81 * t^2
-4.9 * t^2 + 13 * t + 2.3 = 0
Solving this equation electronically gives two results:
t1 = 2.82 s
t2 = -0.17 s
We disregard the negative solution. The ball spends 2.82 seconds in the air.
Answer:
Option D. 9.47 V
Explanation:
We'll begin by calculating the equivalent resistance of the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 20 Ω
Resistor 2 (R₂) = 30 Ω
Resistor 3 (R₃) = 45 Ω
Equivalent Resistance (R) =?
R = R₁ + R₂ + R₃ (series connections)
R = 20 + 30 + 45
R = 95 Ω
Next, we shall determine the current in the circuit. This can be obtained as follow:
Voltage (V) = 45 V
Equivalent Resistance (R) = 95 Ω
Current (I) =?
V = IR
45 = I × 95
Divide both side by 95
I = 45 / 95
I = 0.4737 A
Finally, we shall determine, the voltage across R₁. This can be obtained as follow:
NOTE: Since the resistors are in series connection, the same current will pass through them.
Current (I) = 0.4737 A
Resistor 1 (R₁) = 20 Ω
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 0.4737 × 20
V₁ = 9.47 V
Therefore, the voltage across R₁ is 9.47 V.