A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its original wavelength. The sound wave traveled through a helium balloon (helium is less dense than air could explain this change in wavelength
The pattern of disruption brought on by energy moving away from the sound source is known as a sound wave. Longitudinal waves are what makeup sound. This indicates that the direction of energy wave propagation and particle vibrational propagation are parallel. The atoms oscillate when they are put into vibration.
A high-pressure and a low-pressure zone are created in the medium as a result of this constant back and forth action. Compressions and rarefactions, respectively, are terms used to describe these high- and low-pressure zones. The sound waves go from one medium to another as a result of these regions being transmitted to the surrounding media.
To learn more about sound waves please visit -
brainly.com/question/11797560
#SPJ1
The layout of the stars in the sky is determined by the date, time of night, and your location (mainly latitude). So to pick the best star chart, you should go with the one that's closest to the present date and your location, then make allowance for what time it is. Everything in the sky moves about a degree every 4 minutes.
1 horsepower is equal to 746 W, so the power of the engine is

The power is also defined as the energy E per unit of time t:

Where the energy corresponds to the work done by the engine, which is

. Re-arranging the formula, we can calculate the time t needed to do this amount of work:
Answer:
0.3384 N
Explanation:
Acceleration = 13 m/s^2
Force = 4.4 N
Force = mass * acceleration
mass = force / acceleration
mass = 4.4 / 13
mass = 0.3384 N