For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
Answer:
The "pressure" of the electricity is electric potential. Electric potential is the amount of energy available to push each unit of charge through an electric circuit. The unit of electric potential is the volt. ... A volt is the force needed to move one amp through a conductor that has 1 ohm of resistance
Answer:
45000 kg and 45 tons
Explanation:
The expression in kilograms and tons is shown below;
As we know that
1 gr is 0.001 kg
So, 45000000 = 45,000 kg
And,
1 kg = 0.001 tons
So, 45000 kg = 45 tons
Therefore the same would be considered
Answer:
9 cm
-36 cm
Explanation:
u = Object distance
v = Image distance
f = Focal length = 12
m = Magnification = 4

Lens equation

Object distance is 9 cm

Image distance is -36 cm (other side of object)
1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.