Answer:
3136 Joules
Explanation:
Applying,
P.E = mgh.............. Equation 1
Where P.E = potential energy, m = mass of the cinder block, h = height of the platform, g = acceleration due to gravity.
From the question,
Given: m = 16 kg, h = 20 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
P.E = 16(20)(9.8)
P.E = 3136 Joules
Hence the potential energy of the cinder block is 3136 Joules
Current is inversely proportional to the resistance of the resistor and directly to the potential difference across it.
I = V/R = 6/12 = 0.5 A
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get

The answer is 6.22 N because newtons are the unit used to measure force.
Answer: Last option
2.27 m/s2
Explanation:
As the runner is running at a constant speed then the only acceleration present in the movement is the centripetal acceleration.
If we call a_c to the centripetal acceleration then, by definition

in this case we know the speed of the runner

The radius "r" will be the distance from the runner to the center of the track



The answer is the last option
Answer:
Van der Waal's equation
Explanation:
The Van der Waal's equation is use to calculate the properties of a gas under nonideal or real gases conditions.
.
Here P, V ,T ,n and R have usual meaning as in the ideal gas equation
that is PV=nRT
with the difference of constant a and b. a and b are constants representing magnitude of intermolecular attraction and excluded volume respectively respectively.