Explanation:
Mass of the astronaut, m₁ = 170 kg
Speed of astronaut, v₁ = 2.25 m/s
mass of space capsule, m₂ = 2600 kg
Let v₂ is the speed of the space capsule. It can be calculated using the conservation of momentum as :
initial momentum = final momentum
Since, initial momentum is zero. So,



So, the change in speed of the space capsule is 0.17 m/s. Hence, this is the required solution.
Answer:
<em>B. 68.6m</em>
Explanation:
<u>Free Fall Motion
</u>
When a body is left to move in the air with no friction, the motion is ruled only by the force of gravity. The vertical distance a body travels in the air after a time t is
.

We know the egg takes 3.74 seconds to reach the ground. The height it was launched from is


The closest correct option is
B. 68.6m
Speed is the rate at which something covers a distance; velocity is the same but it takes into account whether it goes forwards or backwards; and acceleration is the rate of an increase in speed.
Answer:
a = 17.68 m/s²
Explanation:
given,
length of the string, L = 0.8 m
angle made with vertical, θ = 61°
time to complete 1 rev, t = 1.25 s
radial acceleration = ?
first we have to calculate the radius of the circle
R = L sin θ
R = 0.8 x sin 61°
R = 0.7 m
now, calculating at the angular velocity


ω = 5.026 rad/s
now, radial acceleration
a = r ω²
a = 0.7 x 5.026²
a = 17.68 m/s²
hence, the radial acceleration of the ball is equal to 17.68 rad/s²