Alaska- Subartic Climate
Portland, Oregon- Marine West Coast Climate
Key West, Florida- Tropical Savannah Climate
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Well, it depends. Your latitude on Earth--that is, how close you are to the equator--and the time of year make a difference. I'll explain why. Your motion is made up of four pieces: the rotation of the Earth on its axis, the motion of the Earth around the Sun, the Sun's orbit about the center of the galaxy, and the motion of the whole galaxy.
Answer:
Angular momentum, 
Explanation:
It is given that,
Radius of the axle, 
Tension acting on the top, T = 3.15 N
Time taken by the string to unwind, t = 0.32 s
We know that the rate of change of angular momentum is equal to the torque acting on the torque. The relation is given by :

Torque acting on the top is given by :

Here, F is the tension acting on it. Torque acting on the top is given by :





So, the angular momentum acquired by the top is
. Hence, this is the required solution.
Answer:
an object sliding down hill
Explanation:
On a slope, the force applied is due to gravity. Its direction is straight down. If the object is sliding down the hill, its displacement is at an angle to the applied force. The angle of displacement will depend on the steepness of the hill.