The motion of the inferior angle of the scapula in the superior and lateral direction is called upward rotation.
<h3>What are the possible motions of the scapula?</h3>
The scapula or the shoulder blade has about six different types of motion it undergoes.
The six ways of movement of the scapula are:
- protraction,
- retraction,
- elevation,
- depression,
- upward rotation, and
- downward rotation
When the inferior angle of the scapula moves in the superior and lateral direction, the motion is called upward rotation.
Learn more about scapula motion at: brainly.com/question/16868917
#SPJ12
Answer:
-50 N
Explanation:
Givens:
V_i = 36 km/h
V_f = 18 km/h
t = 2 s
m = 20 kg
First we have to convert our km/h into m/s:
(36 km*(1000 m/1 km)) / (60 min *(60 s/1 min)) = 10 m/s
(18 km*(1000 m/1 km)) / (60 min *(60 s/1 min)) = 5 m/s
a = (V_f - V_i)/t
a = (5 m/s - 10 m/s) / 2 s
a = -2.5 m/s^2
F = m(a)
F = 20 kg(-2.5 m/s^2)
F = -50 N
It's a negative force meaning its acting on it opposite its current direction of movement.
Answer:
g(h) = g ( 1 - 2(h/R) )
<em>*At first order on h/R*</em>
Explanation:
Hi!
We can derive this expression for distances h small compared to the earth's radius R.
In order to do this, we must expand the newton's law of universal gravitation around r=R
Remember that this law is:

In the present case m1 will be the mass of the earth.
Additionally, if we remember Newton's second law for the mass m2 (with m2 constant):

Therefore, we can see that

With a the acceleration due to the earth's mass.
Now, the taylor series is going to be (at first order in h/R):

a(R) is actually the constant acceleration at sea level
and

Therefore:

Consider that the error in this expresion is quadratic in (h/R), and to consider quadratic correctiosn you must expand the taylor series to the next power:

Answer:
A = 1.4 m/s²
B = -0.10493 m/s³
a = 1.29507 m/s²
T = 28095.8271 N
T = 1.13198 W
Explanation:
t = Time taken
g = Acceleration due to gravity = 9.81 m/s²
The equation

Differentiating with respect to time

At t = 0

Hence, A = 1.4 m/s²

B = -0.10493 m/s³
At t = 5 seconds

a = 1.29507 m/s²

T = 28095.8271 N
Weight of rocket


T = 1.13198 W
Answer:
In radiation, heat transfer occurs through electromagnetic waves without involving particles. In conduction, heat transfer takes place between objects by direct contact.