Answer:
The value of charge q₃ is 40.46 μC.
Explanation:
Given that.
Magnitude of net force 
Suppose a point charge q₁ = -3 μC is located at the origin of a co-ordinate system. Another point charge q₂ = 7.7 μC is located along the x-axis at a distance x₂ = 8.2 cm from q₁. Charge q₂ is displaced a distance y₂ = 3.1 cm in the positive y-direction.
We need to calculate the distance
Using Pythagorean theorem

Put the value into the formula


We need to calculate the magnitude of the charge q₃
Using formula of net force

Put the value into the formula






Hence, The value of charge q₃ is 40.46 μC.
Answer : The value of the constant for a second order reaction is, 
Explanation :
The expression used for second order kinetics is:
![kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}](https://tex.z-dn.net/?f=kt%3D%5Cfrac%7B1%7D%7B%5BA_t%5D%7D-%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
where,
k = rate constant = ?
t = time = 17s
= final concentration = 0.0981 M
= initial concentration = 0.657 M
Now put all the given values in the above expression, we get:


Therefore, the value of the constant for a second order reaction is, 
Ok cool dude bro I just need to answer a question
Answer:
(a) 21.36 ohms
(b) 5.62 A
Explanation:
Parameters given:
Potential difference, V = 120 V
Power, P = 674 W
(a) Power is given as:
P = V²/R
Where R is resistance
=> R = V²/P
R = 120²/674
R = 14400/674
R = 21.36 ohms
(b) Power is also given as:
P = I*V
Where I = Current (time rate of flow of Electric charge)
=> I = P/V
I = 674/120
I = 5.62 A