Answer:
Write 1 event or Andrea Levi's experience that lead her to question her relationship to Britain and Jamaica
Explanation:
Answer:
F = 1.128 10⁸ Pa
Explanation:
Pressure is defined by
P = F / A
If the gas is ideal for equal force eds on all the walls, so on the piston area we have
F = P A
We reduce the pressure to the SI system
P = 150 kpa (1000 Pa / 1kPa = 150 103 Pa
we calculate
F = 150 10³ / 0.00133
F = 1.128 10⁸ Pa
(a) 3675 N
Assuming that the acceleration of the rocket is in the horizontal direction, we can use Newton's second law to solve this part:

where
is the horizontal component of the force
m is the mass of the passenger
is the horizontal component of the acceleration
Here we have
m = 75.0 kg

Substituting,

(b) 3748 N, 11.3 degrees above horizontal
In this part, we also have to take into account the forces acting along the vertical direction. In fact, the seat exerts a reaction force (R) which is equal in magnitude and opposite in direction to the weight of the passenger:

where we used
as acceleration of gravity.
So, this is the vertical component of the force exerted by the seat on the passenger:

and therefore the magnitude of the net force is

And the direction is given by

Answer: 1.3 *10^6 Ω*m
Explanation: In order to explain this problem we have to use the following expression for the resistence:
R=L/(σ*A) where L and A are the length and teh area for the wire, respectively. σ is the conductivity of teh Nichrome.
Then, from mteh OHM law we have V=R*I so R=V/I=2/3.2=0.625 Ω
Finally we have:
σ=L/(R*A)=1.3/(0.625*1.6*10^-6)=1.3*10^6 Ω*m
This problem must be solved using a sketch. I attached an illustration of the problem.
You must trace the ray that reflects from the top off the table to your eyes. This how eyesight works, light rays reflects off the objects into your eyes.
Law of reflection tells us that light ray reflects off the surface at the same angle in which it falls on it( i attached another illustration of this).
Now we can write tangens equations:

We solve for h: