Net Force = (mass) x (acceleration) (Newton #2)
Net Force = (50 kg) x (6 m/s² down)
Net Force = (50 * 6) (kg-m/s² down)
<em>Net Force = 300 Newtons down</em>
Answer:3,45 x 10^9 N
Explanation: We have considered the total charge for each coin , this is the total atoms x 29 electrons for cooper and multiplier by electron charge, the total charge for each coin is 0,464 C
Finally we use the Coulomb law,
F=k Q/ (r)^2
Let k = the force constant of the spring (N/m).
The strain energy (SE) stored in the spring when it is compressed by a distance x=0.35 m is
SE = (1/2)*k*x²
= 0.5*(k N/m)*(0.35 m)²
= 0.06125k J
The KE (kinetic energy) of the sliding block is
KE = (1/2)*mass*velocity²
= 0.5*(1.8 kg)*(1.9 m/s)²
= 3.249 J
Assume that negligible energy is lost when KE is converted into SE.
Therefore
0.06125k = 3.249
k = 53.04 N/m
Answer: 53 N/m (nearest integer)
Answer:
15 less mins will be used by Bob
Explanation:
This is because it takes Tim 2000/50= 40mins to type the whole work
While it takes Bob 2000/80= 25 mins
So the difference 40-25= 15mins
Will be 15mins
Answer:
-3.63 degree Celsius
Explanation:
We are given that
Boiling point of solution=
C
Boiling point water=100 degree Celsius



Where
=Boiling point of solution
Boiling point of pure solvent
C

Using the formula

Molality,
m

Using the formula


We know that

Where
=Freezing point of solvent
Freezing point of solution
Using the formula

Freezing point of water=0 degree Celsius

Hence, the freezing point of solution=-3.63 degree Celsius