The answer is density
because density is equal to the mass/volume
Answer:
![g_{moon}=1.67 [m/s^{2} ]](https://tex.z-dn.net/?f=g_%7Bmoon%7D%3D1.67%20%5Bm%2Fs%5E%7B2%7D%20%5D)
Explanation:
The weight of some mass is defined as the product of mass by gravitational acceleration. In this way using the following formula we can find the weight.

where:
w = weight [N]
m = mass = 0.06 [kg]
g = gravity acceleration = 10 [N/kg]
Therefore:
![w=0.06*10\\w=0.6[N]](https://tex.z-dn.net/?f=w%3D0.06%2A10%5C%5Cw%3D0.6%5BN%5D)
By Hooke's law we know that the force in a spring can be calculated by means of the following expression.

where:
k = spring constant [N/m]
x = deformed distance = 6 [cm] = 0.06 [m]
We can find the spring constant.
![k= F/x\\k=0.6/0.06\\k=10 [N/m]](https://tex.z-dn.net/?f=k%3D%20F%2Fx%5C%5Ck%3D0.6%2F0.06%5C%5Ck%3D10%20%5BN%2Fm%5D)
Since we use the same spring on the moon and the same mass, the constant of the spring does not change, the same goes for the mass.
![F_{moon}=k*0.01\\F = 10*0.01\\F=0.1[N]](https://tex.z-dn.net/?f=F_%7Bmoon%7D%3Dk%2A0.01%5C%5CF%20%3D%2010%2A0.01%5C%5CF%3D0.1%5BN%5D)
Since this force is equal to the weight, we can now determine the gravitational acceleration.
![F=m*g_{moon}\\g=F/m\\g = 0.1/0.06\\g_{moon} = 1.67[m/s^{2} ]](https://tex.z-dn.net/?f=F%3Dm%2Ag_%7Bmoon%7D%5C%5Cg%3DF%2Fm%5C%5Cg%20%3D%200.1%2F0.06%5C%5Cg_%7Bmoon%7D%20%3D%201.67%5Bm%2Fs%5E%7B2%7D%20%5D)
The electric field due to a point charge of 20uC at a distance of 1 meter away from it is 180000
.
First, you have to know that the space surrounding a load suffers some kind of disturbance, since a load located in that space will suffer a force. The disturbance that this charge creates around it is called an electric field.
In other words, an electric field exists in a certain region of space if, when introducing a charge called witness charge or test charge, it undergoes the action of an electric force.
The electric field E created by the point charge q at any point P, located at a distance r, is defined as:

where K is the constant of Coulomb's law.
In this case, you know:
- K= 9×10⁹

- q= 20 uC=20×10⁻⁶ C
- r= 1 m
Replacing in the definition of electric field:

Solving:
<u><em>E=180000 </em></u>
<u><em /></u>
Finally, the electric field due to a point charge of 20uC at a distance of 1 meter away from it is 180000
.
Learn more:
Answer:
A) ρ=
B) μ=
C) v=
D)e=
Explanation:
A)
The magnetic field can be find knowing the current is the charge per second
β= 
β= 8.75x10^{19}e*s
Electron density
ρ=
B)
μ= 
μ
C)
The drift speed using last information found

D)
To compared the random thermal motion and the current's drift speed
