Answer:
its because atoms are incredibly small its looking for atoms is like placing a blueberry in a foot ball field and looking at it from 10 miles up you cant see that blueberry
Explanation:
<h3><u>Answer;</u></h3>
Higher velocity of particles
<h3><u>Explanation;</u></h3>
The diffusion rate is determined by a variety of factors which includes;
- Temperature such that the higher the temperature, the more kinetic energy the particles will have, so they will move and mix more quickly and the diffusion rate will be high.
- Concentration gradient such that the greater the difference in concentration, the quicker the rate of diffusion.
- Higher velocity of particles increases the diffusion rate as this means more kinetic energy by the particles and hence the particles will mix and move faster, thus higher diffusion rate.
Answer: Molarity is defined as moles of solute per liter of solution. So, find the moles of solute and divide by the liters of solution.
molar mass AlCl3 = 133g/mole
moles AlCl3 = 127 g x 1 mole/133 g = 0.955 moles
liters of solution = 400 ml x 1 liter/1000 ml = 0.400 liters
Molarity = 0.955 moles/0.400 liters = 2.39 M
Explain: I looked it up on wyzant.com
Answer:
34.3 g
Explanation:
Step 1: Write the balanced equation
2 CH₃CH₂OH ⇒ CH₃CH₂OCH₂CH₃ + H₂O
Step 2: Calculate the moles corresponding to 50.0 g of CH₃CH₂OH
The molar mass of CH₃CH₂OH is 46.07 g/mol.
50.0 g × 1 mol/46.07 g = 1.09 mol
Step 3: Calculate the theoretical moles of CH₃CH₂OCH₂CH₃ produced
The molar ratio of CH₃CH₂OH to CH₃CH₂OCH₂CH₃ is 2:1. The moles of CH₃CH₂OCH₂CH₃ theoretically produced are 1/2 × 1.09 mol = 0.545 mol.
Step 4: Calculate the real moles of CH₃CH₂OCH₂CH₃ produced
The percent yield of the reaction is 85%.
0.545 mol × 85% = 0.463 mol
Step 5: Calculate the mass corresponding to 0.463 moles of CH₃CH₂OCH₂CH₃
The molar mass of CH₃CH₂OCH₂CH₃ is 74.12 g/mol.
0.463 mol × 74.12 g/mol = 34.3 g
2,8,3 because Aluminium has the Atomic Number 13