Answer: 1.8
Explanation:
You are given
the object distance U = 24.8 cm
Focal length F = 16.0 cm
First find the image distance by using the formula:
1/f = 1/u + 1/v
Where V = image distance
Substitute u and f into the formula
1/16 = 1/24.8 + 1/v
1/ v = 1/16 - 1/24.8
1/v = 0.0625 - 0.04032258
1/v = 0.022177
Reciprocate both sides by dividing both sides by one
V = 45.09 cm
Magnification M is the ratio of image distance to the object distance. That is,
M = V/U
Substitute V and U into the formula
M = 45.09/24.8
M = 1.818
Magnification of the image is therefore equal to 1.8 approximately
The answer is 60 mph.
The speed (v) is distance (d) per time (t): v = d/t
Car A:
v1 = ?
t1 = 2 h
d1 = ?
___
v1 = d1/t1
d1 = v1 * t1
Car B:
v2 = ?
t2 = 1.5 h
d2 = ?
___
v2 = d2/t2
d2 = v2 * t2
<span>Two cars traveled equal distances:
d1 = d2
</span>v1 * t1 = v2 * t2
<span>Car B traveled 15 mph faster than Car A:
v2 = v1 + 15
</span>v1 * t1 = v2 * t2
v2 = v1 + 15
________
v1 * 2 = (v1 + 15) * 1.5
2v1 = 1.5v1 + 22.5
2v1 - 1.5v1 = 22.5
0.5v1 = 22.5
v1 = 22.5/0.5
v1 = 45 mph
v2 = v1 + 15
v2 = 45 + 15
v2 = 60 mph
Step 2: Use the slope to find<span> the y-intercept. </span>Line<span> is </span>parallel<span> so use m = 2/5. </span>6<span>. </span>Find<span>the </span>equation<span> of a </span>line passing through the point<span> (8, –</span>9<span>) perpendicular to the </span>line<span> 3x + 8y = 4.</span>
Answer: 2.83 J/mol
Explanation:
Heat of solution, sometimes interchangeably called enthalpy of solution, is said to be the energy released or absorbed when the solute dissolves in the solvent. A solute is that which can dissolve in a solvent, to form a solution
Given
No of moles of CaCl = 7.5 mol
Total energy used = 21.2 J
Heat of solution = q/n where
q = total energy
n = number of moles
Heat of solution = 21.2 / 7.5
Heat of solution = 2.83 J/mol
There are no appropriate units for power on the list you provided