1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
2 years ago
13

In an engine, an almost ideal gas is compressed adiabatically to half its volume. In doing so, 1850 J of work is done on the gas

. What is the change in internal energy of the gas?
Physics
1 answer:
Oliga [24]2 years ago
6 0

Answer:

The value of change in internal l energy of the gas = 1850 J

Explanation:

Work done on the gas (W) =  - 1850 J

Negative sign is due to work done on the system.

From the first law  we know that Q = Δ U + W ------------- (1)

Where Q = Heat transfer to the gas

Δ U = Change in internal energy of the gas

W = work done on the gas

Since it is adiabatic compression of the gas so heat transfer to the gas is zero.

⇒ Q = 0

So from equation (1)

⇒ Δ U = - W ----------------- (2)

⇒ W = - 1850 J (Given)

⇒ Δ U = - (- 1850)

⇒ Δ U = + 1850 J

This is the value of change in internal energy of the gas.

You might be interested in
An ostrich can run at a speed of 43 mi/hr. How much ground can an ostrich cover if it runs at this speed for 15 minutes? (Hint:
Simora [160]
..... It would possibly she eenejjsjejeej 1.4
4 0
3 years ago
Unpolarized light with an intensity of 22.4 ????ux passes through a polarizer whose transmission axis is vertically oriented. (a
irina1246 [14]

Answer:

a)      I₁ = 11.2 Lux , vertical direction , b)      I₂ = 1.44 Lux

Explanation:

a) A polarized is a system that absorbs light that is not polarized in the direction of its axis, therefore half of the non-polarized light must be absorbed

consequently the above the processed light has half of the incident intensity and the directional of the polarized

          I₁ = I₀ / 2

          I₁ = 22.4 / 2

          I₁ = 11.2 Lux

is polarized in the vertical direction

b) The polarized light falls on a second polarizer, therefore it must comply with the law of Malus

         I₂ = I₁ cos² θ

         I₂ = 11.2 cos² 69

         I₂ = 1.44 Lux

8 0
3 years ago
Susan's 10.0kg baby brother Paul sits on a mat. Susan pulls the mat across the floor using a rope that is angled 30? above the f
elena-s [515]

Answer:

The speed after being pulled is 2.4123m/s

Explanation:

The work realize by the tension and the friction is equal to the change in the kinetic energy, so:

W_T+W_F=K_f-K_i (1)

Where:

W_T=T*x*cos(0)=32N*3.2m*cos(30)=88.6810J\\W_F=F_r*x*cos(180)=-0.190*mg*x =-0.190*10kg*9.8m/s^{2}*3.2m=59.584J\\ K_i=0\\K_f=\frac{1}{2}*m*v_f^{2}=5v_f^{2}

Because the work made by any force is equal to the multiplication of the force, the displacement and the cosine of the angle between them.

Additionally, the kinetic energy is equal to \frac{1}{2}mv^{2}, so if the initial velocity v_i is equal to zero, the initial kinetic energy K_i is equal to zero.

Then, replacing the values on the equation and solving for v_f, we get:

W_T+W_F=K_f-K_i\\88.6810-59.5840=5v_f^{2}\\29.097=5v_f^{2}

\frac{29.097}{5}=v_f^{2}\\\sqrt{5.8194}=v_f\\2.4123=v_f

So, the speed after being pulled 3.2m is 2.4123 m/s

8 0
2 years ago
Imagine a 15 kg block moving with a velocity of 20 m/s to the left. Calculate the kinetic Energy of this block.
ivann1987 [24]

Answer:

3000 J

Explanation:

Kinetic energy is:

KE = ½ mv²

If m = 15 kg and v = -20 m/s:

KE = ½ (15 kg) (-20 m/s)²

KE = 3000 J

3 0
3 years ago
On a straight, level, two-lane road, two cars moving in opposite directions approach and pass each other. Car A is in the eastbo
ludmilkaskok [199]

Answer:

a) 42 m/s, positive direction (to the east), b) 42 m/s, negative direction (to the west).

Explanation:

a) Let consider that Car A is moving at positive direction. Then, the relative velocity of Car A as seen by the driver of Car B is:

\vec v_{A/B} = \vec v_{A} - \vec v_{B}\\\vec v_{A/B} = 11 \frac{m}{s} \cdot i + 31 \frac{m}{s} \cdot i\\\vec v_{A/B} = 42 \frac{m}{s} \cdot i

42 m/s, positive direction (to the east).

b) The relative velocity of Car B as seen by the drive of Car A is:

\vec v_{B/A} = \vec v_{B} - \vec v_{A}\\\vec v_{B/A} = -31 \frac{m}{s} \cdot i - 11 \frac{m}{s} \cdot i\\\vec v_{B/A} = - 42 \frac{m}{s} \cdot i

42 m/s, negative direction (to the west).

5 0
3 years ago
Other questions:
  • Which unit of speed will you use to express the speed of the following. 1. Aeroplane. 2.tortoise. 3.ant 4.horse​
    13·1 answer
  • 5 uses of satellite​
    15·1 answer
  • Unit of work is derived unit why​
    7·1 answer
  • A helium balloon ride lifts up passengers in a basket. Assume the density of air is 1.28 kg/m3 and the density of helium in the
    9·1 answer
  • The angle of incidence at a solid/liquid boundary is 59.6a?°, and the index of refraction of the solid is n = 1.55. (a what must
    14·1 answer
  • At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 8.00 ✕ 106 m/s pe
    12·1 answer
  • The approximate rotation period of the Moon is: A. 1 day B. 1 week C. I month D. Infinite, since the Moon does not rotate, but k
    6·1 answer
  • A red cart has a mass of 4 kg and a velocity of 5 m/s. There is a 2-kg blue cart that is parked and not moving, thus its velocit
    10·1 answer
  • Does a heavier object or a lighter object experience a greater gravitational<br> force?
    11·1 answer
  • a force of 50 newtons pulls a rope attached to a 150 newton sled across a horizontal surface at a constant velocity of 5 meters
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!