<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
Answer:
a) -1.25 rev/s² and 23.3 rev
b) 2.67s
Explanation:
a) ω
= (500 rev/min)(1min/ 60s) => 8.333 rev/s
ω
= (200 rev/min)(1min/ 60s) => 3.333rev/s
time 't'= 4 s
angular acceleration 'α
'=?
constant angular acceleration equation is given by,
ω
= ω
+ α
t
α
= (ω
- ω
)/t => (3.333-8.333)/4
α
= -1.25 rev/s²
θ-θ
= ω
t + 1/2α
t²
=(8.333)(4) + 1/2 (-1.25)(4)²
=23.3 rev
b) ω
=0 (comes to rest)
ω
= 3.333 rev/s
α
= -1.25 rev/s²
ω
= ω
+ α
t
t= (ω
- ω
)/α
=> (0- 3.333)/-1.25
t= 2.67s
Answer:
Polaroid fliter
Explanation:
light can be polarized by using Polaroid filters
Polaroid fliter are made of special material that is capable of blocking one of the two planes of vibration of an electromagnetic wave
hope this is useful--(have a good day)
I dont really know but i think the first one is true super sorry