The question is incomplete. The complete question is :
Two conducting spheres are mounted on insulating rods. They both carry some initial electric charge, and are far from any other charge. Their charges are measured. Then, the spheres are allowed to briefly touch, and the charge in one of them (sphere A) is measured again. These are the measured values:
a). Before contact:
Sphere A = 4.8 nC
Sphere B = 0 nC
What is the charge on sphere B after contact, in nC?
b). Before contact:
Sphere A = 2.9 nC
Sphere B = -4.4 nC
What is the charge on sphere B after contact, in nC?
Solution :
It is given that there are two spheres that are conducting and are mounted on an insulating rods which carry a initial charge and they are briefly touched and then one of the charge is measured.
Here the charge becomes divided when both the spheres are connected and then removed.
a). charge after they are charged


= 2.4 nC
b). The charge is


= -0.75 nC
Answer:
L = ¼ k g / m
Explanation:
This is an interesting exercise, in the first case the spring bounces under its own weight and in the second it oscillates under its own weight.
The first case angular velocity, spring mass system is
w₁² = k / m
The second case the angular velocity is
w₂² = L / g
They tell us
w₂ = ½ w₁
Let's replace and calculate
√ (L / g) = ½ √ (k / m)
L / g = ¼ k / m
L = ¼ k g / m
Answer:
B
Explanation:
the amplitude is the distance from the resting point to the crest/trough.
The answer would be C because there is six electrons and so there will be six protons because the amount of protons and electrons have to be the same otherwise it would be an unbalanced particle and you wouldn't be able to touch the object it is in without worrying about something happening
Answer:
4th answer
Explanation:
The gradient of a distance-time graph gives the speed.
gradient = distance / time = speed
Here, the gradient is a constant till 30s. So it has travelled at a constant speed. It means it had not accelarated till 30s. and has stopped moving at 30s.