Answer:
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Explanation:
Step 1: Data given
Mass of sodium bicarbonate = 2.7 grams
Step 2: The balanced equation
HCl + NaHCO3 ⇔ NaCl + H2O + CO2
Step 3: Calculate moles NaHCO3
moles NaHCO3 =2.7 g / 84 g/mol= 0.032 moles
Step 4: Calculate moles HCl
For 1 mol NaHCO3 we need 1 mol HCl
For 0.032 moles NaHCO3 = 0.032 moles HCl
Step 5: Calculate mass HCl
Mass HCl = moles HCl * molar mass HCl
mass HCl = 0.032 * 36.46 g/mol= 1.17 grams
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Answer:
0.46 V
Explanation:
The emf for the cell is given by:
Eº cell = Eº oxidation + Eº reduction
From the given balanced chemical equation, we can deduce that Fe²⁺ has been oxidized to Fe³⁺, and O reduced from 0 to negative 2, according to the half cell reactions:
4Fe²⁺ ⇒ Fe³⁺ + 4e⁻ oxidation
O₂ + 4H⁺ + 4 e⁻ ⇒ 2 H₂O reduction
From reference tables for the standard reduction potential, we get
Eº red Fe³⁺ / Fe²⁺ Eºred = 0.77 V
Eº red O₂ / H₂O Eºred = 1.23 V
Now all we need to do is change the sign of Eº reduction for the species being oxidized ( Fe²⁺ ) and add it to Eº reduction O₂:
Eº cell = Eº oxidation + Eº reduction = - (0.77 V ) + 1.23 V = 0.46 V
Answer: the answer should and most definitely be D.
Explanation: I mean think about it after a while only a few radioactive nuclei are left which means it will dye down after a while which also makes it very boring hope this helps :)