1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olasank [31]
3 years ago
8

Convert 850 nm wavelength into frequency, eV, wavenumber, joules and ergs.

Engineering
1 answer:
Sholpan [36]3 years ago
5 0

Answer:

Frequency = 3.5294\times 10^{14}s^{-1}

Wavenumber = 1.1765\times 10^6m^{-1}

Energy = 2.3365\times 10^{-19}J

Energy = 1.4579 eV

Energy = 2.3365\times 10^{-12}erg

Explanation:

As we are given the wavelength = 850 nm

conversion used : (1nm=10^{-9}m)

So, wavelength is  850\times 10^{-9}m

The relation between frequency and wavelength is shown below as:

Frequency=\frac{c}{Wavelength}

Where, c is the speed of light having value = 3\times 10^8m/s

So, Frequency is:

Frequency=\frac{3\times 10^8m/s}{850\times 10^{-9}m}

Frequency=3.5294\times 10^{14}s^{-1}

Wavenumber is the reciprocal of wavelength.  

So,  

Wavenumber=\frac{1}{Wavelength}=\frac{1}{850\times 10^{-9}m}

Wavenumber=1.1765\times 10^6m^{-1}

Also,  

Energy=h\times frequency

where, h is Plank's constant having value as 6.62\times 10^{-34}J.s

So,  

Energy=(6.62\times 10^{-34}J.s)\times (3.5294\times 10^{14}s^{-1})

Energy=2.3365\times 10^{-19}J

Also,  

1J=6.24\times 10^{18}eV

So,  

Energy=(2.3365\times 10^{-19})\times (6.24\times 10^{18}eV)

Energy=1.4579eV

Also,  

1J=10^7erg

So,  

Energy=(2.3365\times 10^{-19})\times 10^7erg

Energy=2.3365\times 10^{-12}erg

You might be interested in
Water flows around a 6-ft diameter bridge pier with a velocity of 12 ft/s. Estimate the force (per unit length) that the water e
jolli1 [7]

Answer: hello the diagram related to your question is missing please the third image is the missing part of the question

Fx = 977.76 Ib/ft

Explanation:

<u>Estimate the force that water exerts on the pier </u>

V = 12 ft/s

D( diameter ) = 6 ft

first express the force  on the first half of the cylinder  as

Fx1 =  - -2\int\limits^\pi _\frac{\pi }{2}   {Ps*cos\beta *a} \, d\beta   ---------------- ( 1 )

where ; Fy = 0

Ps = Po + 1/2 Pv^2 ( 1 - 4 sin^2β )  ------------- ( 2 )

Input equation (2)  into equation ( 1 )         (note :  assuming Po = 0 )

attached below is the remaining part of the solution

3 0
3 years ago
A bar having a length of 5 in. and cross-sectional area of 0. 7 in.2 is subjected to an axial force of 8000 lb. If the bar stret
andrew11 [14]

The modulus of elasticity is 28.6 X 10³ ksi

<u>Explanation:</u>

Given -

Length, l = 5in

Force, P = 8000lb

Area, A = 0.7in²

δ = 0.002in

Modulus of elasticity, E = ?

We know,

Modulus of elasticity, E = σ / ε

Where,

σ is normal stress

ε is normal strain

Normal stress can be calculated as:

σ = P/A

Where,

P is the force applied

A is the area of cross-section

By plugging in the values, we get

σ = \frac{8000 X 10^-^3}{0.7}

σ = 11.43ksi

To calculate the normal strain we use the formula,

ε = δ / L

By plugging in the values we get,

ε = \frac{0.002}{5}

ε = 0.0004 in/in

Therefore, modulus of elasticity would be:

E = \frac{11.43}{0.004} \\\\E = 28.6 X 10^3 ksi

Thus, modulus of elasticity is 28.6 X 10³ ksi

6 0
3 years ago
How buy airpods in my phone​
Levart [38]

U mean how to connect them to your phone?

4 0
2 years ago
Read 2 more answers
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turb
guajiro [1.7K]

Answer:

\eta_{turbine} = 0.603 = 60.3\%

Explanation:

First, we will find actual properties at given inlet and outlet states by the use of steam tables:

AT INLET:

At 4MPa and 350°C, from the superheated table:

h₁ = 3093.3 KJ/kg

s₁ = 6.5843 KJ/kg.K

AT OUTLET:

At P₂ = 125 KPa and steam is saturated in  vapor state:

h₂ = h_{g\ at\ 125KPa} = 2684.9 KJ/kg

Now, for the isentropic enthalpy, we have:

P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K

Since s₂ is less than s_g and greater than s_f at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

x = \frac{s_2-s_f}{s_{fg}} \\\\x = \frac{6.5843\ KJ/kg.K - 1.3741\ KJ/kg.K}{5.91\ KJ/kg.K}\\\\x = 0.88

Now, we will find h_{2s}(enthalpy at the outlet for the isentropic process):

h_{2s} = h_{f\ at\ 125KPa}+xh_{fg\ at\ 125KPa}\\\\h_{2s} = 444.36\ KJ/kg + (0.88)(2240.6\ KJ/kg)\\h_{2s} = 2416.088\ KJ/kg

Now, the isentropic efficiency of the turbine can be given as follows:

\eta_{turbine} = \frac{h_1-h_2}{h_1-h_{2s}}\\\\\eta_{turbine} = \frac{3093.3\ KJ/kg-2684.9\ KJ/kg}{3093.3\ KJ/kg-2416.088\ KJ/kg}\\\\\eta_{turbine} = \frac{408.4\ KJ/kg}{677.212\ KJ/kg}\\\\\eta_{turbine} = 0.603 = 60.3\%

3 0
3 years ago
How can I solve 23.5 million Nona meters to millimeters using no calculator because I have to show my work
katrin2010 [14]

Express it in standard form and apply the basic indices laws to simplify

6 0
3 years ago
Read 2 more answers
Other questions:
  • In this milestone we will create a Course class to represent a course and display its information on the screen. We will create
    9·1 answer
  • Wqqwfqwfqwfqfqfqffqwffqwqfqqfqfqffqqfqfwccc
    12·2 answers
  • A completely mixed activated-sludge process is being designed for a wastewater flow of 10,000 m3/d (2.64 mgd) using the kinetics
    6·1 answer
  • (TCO 1) Name one disadvantage of fixed-configuration switches over modular switches. a. Ease of management b. Port security b. F
    6·1 answer
  • Dunno what to ask, okbye
    5·1 answer
  • A student is building a circuit which material should she use for the wires and why?
    10·2 answers
  • Entor" by
    9·1 answer
  • The boost converter of Fig. 6-8 has parameter Vs 20 V, D 0.6, R 12.5 , L 10 H, C 40 F, and the switching frequency is 200 kHz. (
    12·1 answer
  • Why does my delivery date keep changing on my tesla model 3
    13·1 answer
  • Help please i will give brainlist
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!