1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
2 years ago
14

Consider a drug-eluting balloon catheter deployed into a blood vessel. The balloon is inflated to perfectly adhere to the vessel

walls. Drug is released from the outer surface of the balloon and diffuses radially through the endothelial tissue only in the r-direction. Let the outside radius of the balloon be r = R_0, where the drug has a constant concentration c_0. The drug diffuses into the tissue as far as r = R, where the concentration of the drug becomes zero.
Assume cylindrical geometry, steady state conditions and no chemical reaction involving the drug. The drug diffusion coefficient in tissue is D.
(a) Find an expression for the profile c(r) inside the tissue (i.e. from R_0 to R).
(b) Determine the diffusive flux at the outer surface of the balloon.
Engineering
1 answer:
GaryK [48]2 years ago
6 0

Answer:

a)  Cr = Co - Fx / D

b)   ΔC / Δx = ( CR - Cr )  / ( xR - xRo )

Explanation:

A) Derive an expression for the profile c(r) inside the tissue

F = DΔC / X  = D ( Co - Cr ) / X   ------ 1

where : F = flux , D = drug diffusion coefficient

            X = radial distance between Ro and R

Hence : Cr = Co - Fx / D

B) Express the diffusive flux at outer surface of the balloon

Diffusive flux at outer surface =  ΔC / Δx = CR - Cr / xR - xRo

You might be interested in
The normal stress at gage H calculated in Part 1 includes four components: an axial component due to load P, σaxial, P, a bendin
Degger [83]

Answer:

hello your question has some missing information attached to the answer is the missing component

Answer : αaxial,p = -6.034 ksi ( compressive )

             αbend,p = 19.648 ksi ( tensile )

Explanation:

αaxial, p = \frac{-p}{A}   equation 1

αbend, p = \frac{(P*A)*\frac{d}{2} }{I_{z} } equation 2

P = load = 35 kips

A = area of column = 5.8 in^{2}

d = column cross section depth = 9.5 in

I_{Z} = 55.0 in^{4}

Hence equation 1 becomes

αaxial,p = -35 / 5.8 = - 6.034 ksi ( compressive )

equation 2 becomes

αbend, p = \frac{(35*6.5)(\frac{9.2}{2}) }{55} = + 19.648 ksi ( tensile )

7 0
3 years ago
13. Which stroke of the four-stroke cycle is shown in the above figure?
lianna [129]

Answer:

the cycle is on the power just before the exhaust as both the valves are closed

7 0
2 years ago
Two balanced Y-connected loads in parallel, one drawing 15kW at 0.6 power factor lagging and the other drawing 10kVA at 0.8 powe
NemiM [27]

Answer:

(a) attached below

(b) pf_{C}=0.85 lagging

(c) I_{C} =32.37 A

(d) X_{C} =49.37 Ω

(e) I_{cap} =9.72 A and I_{line} =27.66 A

Explanation:

Given data:

P_{1}=15 kW

S_{2} =10 kVA

pf_{1} =0.6 lagging

pf_{2}=0.8 leading

V=480 Volts

(a) Draw the power triangle for each load and for the combined load.

\alpha_{1}=cos^{-1} (0.6)=53.13°

\alpha_{2}=cos^{-1} (0.8)=36.86°

S_{1}=P_{1} /pf_{1} =15/0.6=25 kVA

Q_{1}=P_{1} tan(\alpha_{1} )=15*tan(53.13)=19.99 ≅ 20kVAR

P_{2} =S_{2}*pf_{2} =10*0.8=8 kW

Q_{2} =P_{2} tan(\alpha_{2} )=8*tan(-36.86)=-5.99 ≅ -6 kVAR

The negative sign means that the load 2 is providing reactive power rather than consuming  

Then the combined load will be

P_{c} =P_{1} +P_{2} =15+8=23 kW

Q_{c} =Q_{1} +Q_{2} =20-6=14 kVAR

(b) Determine the power factor of the combined load and state whether lagging or leading.

S_{c} =P_{c} +jQ_{c} =23+14j

or in the polar form

S_{c} =26.92°

pf_{C}=cos(31.32) =0.85 lagging

The relationship between Apparent power S and Current I is

S=VI^{*}

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.

(c) Determine the magnitude of the line current from the source.

Current of the combined load can be found by

I_{C} =S_{C}/\sqrt{3}*V

I_{C} =26.92*10^3/\sqrt{3}*480=32.37 A

(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω

Q_{C} =3*V^2/X_{C}

X_{C} =3*V^2/Q_{C}

X_{C} =3*(480)^2/14*10^3 Ω

(e) Compute the magnitude of the current in each capacitor and the line current from the source.

Current flowing in the capacitor is  

I_{cap} =V/X_{C} =480/49.37=9.72 A

Line current flowing from the source is

I_{line} =P_{C} /3*V=23*10^3/3*480=27.66 A

8 0
3 years ago
A block of ice weighing 20 lb is taken from the freezer where it was stored at -15"F. How many Btu of heat will be required to c
Rus_ich [418]

Answer:

Heat required =7126.58 Btu.

Explanation:

Given that

Mass m=20 lb

We know that

1 lb =0.45 kg

So 20 lb=9 kg

m=9 kg

Ice at -15° F and we have to covert it at 200° F.

First ice will take sensible heat at up to 32 F then it will take latent heat at constant temperature and temperature will remain 32 F.After that it will convert in water and water will take sensible heat and reach at 200 F.

We know that

Specific heat for ice C_p=2.03\ KJ/kg.K

Latent heat for ice H=336 KJ/kg

Specific heat for ice C_p=4.187\ KJ/kg.K

We know that sensible heat given as

Q=mC_p\Delta T

Heat for -15F to 32 F:

Q=mC_p\Delta T

Q=9\times 2.03(32+15) KJ

Q=858.69 KJ

Heat for 32 Fto 200 F:

Q=mC_p\Delta T

Q=9\times 4.187(200-32) KJ

Q=6330.74 KJ

Total heat=858.69 + 336 +6330.74 KJ

Total heat=7525.43 KJ

We know that 1 KJ=0.947 Btu

So   7525.43 KJ=7126.58 Btu

So heat required to covert ice into water is 7126.58 Btu.

8 0
3 years ago
BCC lithium has a lattice parameter of 3.5089 3 10–8 cm and contains one vacancy per 200 unit cells. Calculate (a) the number of
Tanya [424]

(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰

(b) ρ = n X (AM) / v X Nₐ

<u>Explanation:</u>

<u />

Given-

Lattice parameter of Li  = 3.5089 X 10⁻⁸ cm

1 vacancy per 200 unit cells

Vacancy per cell = 1/200

(a)

Number of vacancies per cubic cm = ?

Vacancies/cm³ = vacancy per cell / (lattice parameter)³

Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³

Vacancies/cm³ = 1.157 X 10²⁰

Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰

(b)

Density is represented by ρ

ρ = n X (AM) / v X Nₐ

where,

Nₐ = Avogadro number

AM = atomic mass

n = number of atoms

v = volume of unit cell

4 0
3 years ago
Other questions:
  • What Type of diploma do you need in order To the get into JMU
    12·1 answer
  • Write a method called compFloat5 which accepts as input two doubles as an argument (parameter). Write the appropriate code to te
    9·1 answer
  • Create a program named IntegerFacts whose Main() method declares an array of 10 integers.Call a method named FillArray to intera
    12·1 answer
  • A waste treatment pond is 50m long and 25m wide, and has an average depth of 2m.The density of the waste is 75.3 lbm/ft3. Calcul
    12·1 answer
  • Water at 310 K and a flow rate of 4 kg/s enters an alumina tube (k=177Wm K1) with an inner diameter of 0.20 m and a wall thickne
    13·1 answer
  • A refrigerator operates on average for 10.0 hours an day. If the power rating is the refrigerator is 709 w how much electrical e
    13·1 answer
  • True or false the camshaft is always located in the engine block
    10·1 answer
  • C programming fundamentals for everyone​
    13·1 answer
  • Could I please get help with this​
    11·1 answer
  • What car is this? I thinks its a nissan 240sx but i dont know
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!