Answer: 10.29 sec.
Explanation:
Neglecting drag and friction, and at road level , the energy developed during the time the car is accelerating, is equal to the change in kinetic energy.
If the car starts from rest, this means the following:
ΔK = 1/2 m*vf ²
As Power (by definition) is equal to Energy/Time= 75000 W= 75000 N.m/seg, in order to get time in seconds, we need to convert 100 km/h to m/sec first:
100 (Km/h)*( 1000m /1 Km)*(3600 sec/1 h)= 27,78 m/sec
Now, we calculate the change in energy:
ΔK= 1/2*2000 Kg. (27,78)² m²/sec²= 771,728 J
<h2>If P= ΔK/Δt, </h2><h2>Δt= ΔK/P= 771,728 J / 75,000 J/sec= 10.29 sec.</h2>
Answer: A fly wheel having a mass of 30kg was allowed to swing as pendulum about a knife edge at inner side of the rim as shown in figure.
Explanation:
Glyphicons are icon fonts which you can use in your web projects. Glyphicons Halflings are not free and require licensing, however their creator has made them available for Bootstrap projects free of cost.
Answer:
a. 2.08, b. 1110 kJ/min
Explanation:
The power consumption and the cooling rate of an air conditioner are given. The COP or Coefficient of Performance and the rate of heat rejection are to be determined. <u>Assume that the air conditioner operates steadily.</u>
a. The coefficient of performance of the air conditioner (refrigerator) is determined from its definition, which is
COP(r) = Q(L)/W(net in), where Q(L) is the rate of heat removed and W(net in) is the work done to remove said heat
COP(r) = (750 kJ/min/6 kW) x (1 kW/60kJ/min) = 2.08
The COP of this air conditioner is 2.08.
b. The rate of heat discharged to the outside air is determined from the energy balance.
Q(H) = Q(L) + W(net in)
Q(H) = 750 kJ/min + 6 x 60 kJ/min = 1110 kJ/min
The rate of heat transfer to the outside air is 1110 kJ for every minute.
Answer:
1) 4.361 x 10 raised to power 8 revolutions
2) 1.744 x 10 raised to power 9 firings
3) 2.18 x 10 raised to power 8 intake strokes
Explanation:
The step by step explanation is as shown in the attachment