A plateau period refers to a period in life where you are kind of stuck in the middle. There is little growth or decline so you are kind of at a standstill.
please vote my answer brainliest. thanks!
Most radiation exposure comes from natural sources. These so-called "natural sources" include Radon, Internal, Terrestrial, and Cosmic. Among that, Radon proves to be the largest source of radiation. Radon is a naturally occurring radioactive gas that comes from the breakdown of uranium.
You've got a 69.0-kg wooden crate on a wooden floor. The box can withstand a force of up to 338N in a horizontal direction without being moved. Following this, the wooden creates moving stats.
In order to calculate the friction coefficient, divide the force pushing two objects together by the force acting between them. friction coefficient might be 0 or one. They can be split into two categories: friction coefficient that is static. Kinetic friction coefficient (also known as sliding coefficient of friction).
the acceleration brought on by the gravitational pull of large masses generally, gravitational , often known as the acceleration brought on by the Earth's gravitational pull and centrifugal force,
F= friction coefficient *M*g
F= 0.5*69*9.8
F=338N
Learn more about gravitational here
brainly.com/question/3009841
#SPJ4
Explanation:
1 inch = 25.4 mm
1 foot = 12 inches
1 mile = 5260 feet
1 cm = 0.01 m or 10 mm
Now Sammy's height is 5 feet and 5.3 inches.
(a) We need to find Sammy's height in inches.
Since, 1 foot = 12 inches
5 feet = 5 × 12 inches = 60 inches
Now, 5 feet and 5.3 inches = 60 inches + 5.3 inches = 65.3 inches
Sammy's height is 65.3 inches.
(b) We need to find Sammy's height in feet.
Since, 1 foot = 12 inches

So,

5 feet and 5.3 inches = 5 feet + 0.4416 feet = 5.44 feet
Sammy's height is 5.44 feet.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s