Use the projectile motion equations
H = v^2 x sin^2(θ) ÷ 2g
t = 2 x v x sinθ ÷ g
R = v^2 x sin2θ ÷ g
Answer: the average position of all the parts of the system, weighted according to their masses.
Explanation:
Answer:
answer is 0.1428
Explanation:
Data:- vf=5.0 , vi=0.0 , t=35 , a=? so appling first eq of motion vf=vi+at we have to find a=vf-vi/t , a=5.0-0.0/35 , a=5/35 ,a=0.1428m/sec²
The first thing you should know to answer this question is the following conversion:
1mi = 5280feet
We have then that the speed is:
v = ((1/4) * (5280)) / (8.96)
v = 147.32 feet / s
Answer:
the car's velocity (in ft / s) at the finish line is 147.32 feet / s
Answer:
Gravity varies when the Earth rotates and its mass and density differ based on where you are on the planet. Knowing how gravity affects sea level thus aids geodesists in making more precise calculations. The mean sea level would be higher in parts of the earth where gravitational forces are heavier.
Explanation: