Answer:
b) true. The jobs are equal
Explanation:
The work on a body is the scalar product of the force applied by the distance traveled.
W = F. d
Work is a scalar, the work equation can be developed
W = F d cos θ
Where θ is the angle between force and displacement
Let's apply these conditions to the exercise
a) False, if we see the expression d cosT is the projection of the displacement in the direction of the force, so there may be several displacement, but its projection is always the same
b) true. The jobs are equal dx = d cosθ
c) False, because the force is equal and the projection of displacement is the same
d) False, knowledge of T is not necessary because the projection of displacement is always the same
e) False mass is not in the definition of work
Answer:
Explanation:
The processes are described on the image attached below. The isobaric process consists of an horizontal line, the adiabatic expansion is described by a polytropic curve:

Where:


Final pressure is:



Answer: 148348.6239 kg•m/s
Explanation: Firstly, we need to convert the 14700 N into kilograms, and to do so, use the formula net force is equal to mass times acceleration and rearrange the formula to find mass like shown below...
F = ma
F/a = m
14700/9.81 = 1498.470948 kg, this is your mass
Now that we convert it into kilograms, plug all the numbers into the variable of the momentum formula.
Momentum formula is P = mass x velocity
Like this:
P = 1498.470948 x 99
p = 148348.6239 kg•m/s.
I believe that is your answer, hope that helps you even a bit out.
Thanks.
Using kinematic equation, v^2 - u^2 = 2as. 5^2 - 3^2 = 2a x 16. a = 0.5m/s^2. So particle will deaccelerate at 0.5m/s^2. ( v = final velocity, u= initial velocity, a= acceleration, s= displacement.)