Answer:
b
Explanation:
imagine urself on an elevator dont you feel lighter
C. Thick wire and cold temperature.
Explanation:
The resistance of a wire is given by: R = (ρL)/A
where ρ is the resistivity of the material, L is the length of the wire, A is the cross-sectional area of the wire.
From the formula, we see that the thicker the wire, the larger A, therefore the smaller the resistivity. so, a thick wire will have lower resistivity.
Moreover, the resistance of a wire increases with the temperature. In fact, high temperatures mean more motion of the atoms/electrons inside the wire, so more resistance to the flow of current through it. Therefore, colder temperature means lower resistance.
So, the correct option is thick wire and cold temperature.
Answer:
A
Explanation:
The greatest concentration of atomic mass is in the nucleus because it is made up of protons and neutrons. The electrons surrounding the nucleus don't have as much mass as protons or neutrons.
Hopefully this helps...
Answer:
E = q V B describes the electric field induced
E Proportional to V B
while the magnet is pushed into the coil the induced field (B) will increase (consider 1 turn of the coil)
If V is constant the E-field will increase due to increasing B and the galvanometer will deflect accordingly
When V drops to zero the deflection must again be zero
So one would see a blip due to the deflection of the galvanometer
Note that as V increases the galvanometer will deflect one way and then as V drops to zero the deflection will be opposite (drop to zero when V is zero)
B always increases to a constant value because of the properties of the magnet.
Answer:
a)

b)
m = 48lb
c)
b = 144.76lb
Explanation:
The general equation of a damping oscillate motion is given by:
(1)
uo: initial position
m: mass of the block
b: damping coefficient
w: angular frequency
α: initial phase
a. With the information given in the statement you replace the values of the parameters in (1). But first, you calculate the constant b by using the information about the viscous resistance force:

Then, you obtain by replacing in (1):
6in = 0.499 ft

b.
mass, m = 48lb
c.
b = 144.76 lb/s