Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Answer:
Explanation:
Altitude of the Sun and the latitude position on the earth play an important role in the season change on the earth.
When the altitude of the sun is high then the average temperature of the earth is higher because the luminous intensity of the sun rays is higher due to the focusing of high energy sun rays over a small area.
But when the sun is at higher altitudes we receive less denser rays of the sun and hence we have less heat on the earth on an average.
- But despite of the altitude some places on the earth have distinct temperature than the other place at the same time of the year. This is due to their latitudinal location. The places near the equator are warmer most of the times throughout the year because they receive the most direct rays while the poles receive slanting rays and hence are colder even in summer when the earth is at lower altitudes.
Answer:
A = m³/s³ = [L]³/[T]³ = [L³T⁻³]
B = m³s = [L³T]
Explanation:
We have the equation:
V = At³ + B/t
where, the dimensions of each variable are as follows:
V = m³ = [L]³
t = s = [T]
substituting these in equation, we get:
m³ = A(s)³ + B/s
for the homogeneity of the equation:
A(s)³ = m³
<u>A = m³/s³ = [L]³/[T]³ = [L³T⁻³]</u>
Also,
B/s = m³
<u>B = m³s = [L³T]</u>
Answer:
The false statement is in option 'd': The center of mass of an object must lie within the object.
Explanation:
Center of mass is a theoretical point in a system of particles where the whole mass of the system is assumed to be concentrated.
Mathematically the position vector of center of mass is defined as

where,
is the position vector of the mass dm.
As we can see for homogenous symmetrical objects such as a sphere,cube,disc the center of mass is located at the centroid of the shapes itself but in many shapes it is located outside the body also.
Examples of shapes in which center of mass is located outside the body:
1) Horseshoe shaped body.
2) A thin ring.
In many cases we can make shapes of bodies whose center of mass lies outside the body.