Answer:
Explanation:
side of the square loop, a = 7 cm
distance of the nearest side from long wire, r = 2 cm = 0.02 m
di/dt = 9 A/s
Integrate on both the sides

i = 9t
(a) The magnetic field due to the current carrying wire at a distance r is given by


(b)
Magnetic flux,





(c)
R = 3 ohm

magnitude of voltage is
e = 1.89 x 10^-7 V
induced current, i = e / R = (1.89 x 10^-7) / 3
i = 6.3 x 10^-8 A
A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
Answer:
V=4.7m/s
Explanations:
Let Ma mass of cat A=7kg
Va velocity of cat A=7m/s
Mb mass of cat b=6.1kg
VB velocity of cat b=2m/s
From conservation of linear momentum
MaVa+MbVb=(Ma+Mb)V
7*7+6.1*2=(7+6.1)V
61.2=13.1V
V=4.7m/s
Answer:
Explanation:
Stefan's formula for emission of radiation is
E = e σ A ( T⁴ - T₀⁴ )
E is energy radiated , e is emissivity , σ is stefan's constant , T is temperature of object and T₀ is temperature of surrounding. A is area of surface .
E = .35 x 5.67 x 10⁻⁸ ( 298⁴ - 268⁴ ) x 4π x .25²
= 1.9845 x 10⁻⁸ ( 78.86 - 51.58 ) x 10⁸ x .0625
= 3.38 J /s
Answer:
3. if you increase your mass you also increase the gravitational pull
6. Radiant energy doesn't depend on a medium and sound energy is dependent on a medium.
Explanation:
i hope this helps-