Answer: Force F will be one-sixteenth of the new force when the charges are doubled and distance halved
Explanation:
Let the charges be q1 and q2 and the distance between the charges be 'd'
Mathematical representation of coulombs law will be;
F1=kq1q2/d²...(1)
Where k is the electrostatic constant.
If q1 and q2 is doubled and the distance halved, we will have;
F2 = k(2q1)(2q2)/(d/2)²
F2 = 4kq1q2/(d²/4)
F2 = 16kq1q2/d²...(2)
Dividing equation 1 by 2
F1/F2 = kq1q2/d² ÷ 16kq1q2/d²
F1/F2 = kq1q2/d² × d²/16kq1q2
F1/F2 = 1/16
F1 = 1/16F2
This shows that the force F will be one-sixteenth of the new force when the charges are doubled and distance halved
Answer: 17.68 s
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the ball when it hits the ground
is the initial height of the ball
is the initial velocity of the ball
is the time when the ball strikes the ground
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Rewritting (2):
(3)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(4)
Where:



Substituting the known values:
(5)
Solving (5) we find the positive result is:

Answer: potential energy but no kinetic energy
Explanation:
Since the rock is stationary, velocity is zero, therefore no kinetic energy,but there's potential energy because the rock is at rest,
Answer
6.66 seconds imma seem like an idiot if something like this is werong
Explanation:
dogg is speed
100/15
<span>The three major types of
symbiosis are mutualism, where both species benefit, commensalism, where
one species benefits and the other is unaffected, and parasitism, where
one species benefits and the other is harmed. Symbiotic relationships can occur within an organism's body or outside of it. </span><span>Examples of mutualism include the
relationship between single-celled organisms or animals that incorporate
algae into their bodies. They give the algae necessary nutrients, and
in return receive chemical energy from the photosynthetic algae. Animals
that have this sort of relationship include some sponges, sea anemones
and clams.
Examples of commensalism include remora fish attaching to the bodies
of sharks and eating scraps of food that escape their jaws, and
barnacles living on the jaws of whales with a similar feeding strategy.
Plants have commensal relationships as well, such as many orchids that
grow on taller plants and benefit from the additional sunlight they
obtain, without actually stealing nutrients from the host plant.
Parasitic relationships are many, and parasites include all
disease-causing organisms. This category also includes insects such as
fleas that suck the blood of hosts externally. Parasitism is a very
efficient strategy for organisms, and parasites often lose many of the
features of non-parasitic life forms, instead relying on their hosts for
many of the functions of life.</span>