Most genes contain the information needed to make functional molecules called proteins. (A few genes produce other molecules that help the cell assemble proteins.) The journey from gene to protein is complex and tightly controlled within each cell. It consists of two major steps: transcription and translation. Together, transcription and translation are known as gene expression.
During the process of transcription, the information stored in a gene's DNA is transferred to a similar molecule called RNA (ribonucleic acid) in the cell nucleus. Both RNA and DNA are made up of a chain of nucleotide bases, but they have slightly different chemical properties. The type of RNA that contains the information for making a protein is called messenger RNA (mRNA) because it carries the information, or message, from the DNA out of the nucleus into the cytoplasm.
Translation, the second step in getting from a gene to a protein, takes place in the cytoplasm. The mRNA interacts with a specialized complex called a ribosome, which "reads" the sequence of mRNA bases. Each sequence of three bases, called a codon, usually codes for one particular amino acid. (Amino acids are the building blocks of proteins.) A type of RNA called transfer RNA (tRNA) assembles the protein, one amino acid at a time. Protein assembly continues until the ribosome encounters a “stop” codon (a sequence of three bases that does not code for an amino acid).
The flow of information from DNA to RNA to proteins is one of the fundamental principles of molecular biology. It is so important that it is sometimes called the “central dogma.”
Through the processes of transcription and translation, information from genes is used to make proteins.
Answer:D
Explanation: Because it has the least amount of density in it. All the others are heavier, meaning they will sink. Just like if you drop a rock water and a feather, the feather will float.
Density def:
Density, mass of a unit volume of a material substance. ... Density offers a convenient means of obtaining the mass of a body from its volume or vice versa; the mass is equal to the volume multiplied by the density (M = Vd), while the volume is equal to the mass divided by the density (V = M/d).
Answer:
Enzymes serve as catalysts to many biological processes, and so they are not used up in reactions and they may be recovered and reused. However, in a laboratory setting, reactions involving enzymes can leave the enzyme unrecoverable. This process makes the enzyme at once less reactive but more stable.
Answer:
The answer would be C. An organism is able to better withstand a toxin!
Explanation:
This is most likely because if it is a beneficial mutation, it has an effect that allows the organism to better survive and thrive, and being able to withstand a toxin can definitely support survival and reproduction.
I really hope this helped you! Have a nice day! :)