When you talk about rate, you will expect that it will be in terms of a time unit. It measures how fast it is going. So, you would expect that the denominator is in time units. For the movement, you can measure this with either distance or velocity.
So, for the first variety, you would need distance and time to measure the rate of how far you go at a certain time. It is also called as velocity. For the second variety, you would need velocity and time to measure the rate of how fast you are going at a certain interval. It is also called as acceleration.
Answer:
T1 = 490.5 [N], T2 = 490.5[N]
Explanation:
First, we must draw a free body diagram of the steel ball hanging and the two wires holding it as well as the angle forming the wires between them.
The free-body diagram can be seen in the attached image.
As the cables are symmetrical with respect to the vertical axis, the force in cables 1 and 2 is equal, so when performing a force sum equal to zero on the Y-axis, we can find the force value of any cable.
The solution of the equations can be seen in the attached image
The increase in gravitational potential energy for an object of mass m is given by

where

is the increase in altitude of the object.
In our problem, m=3.0 kg,

and

(approximated value), so we have
In my opinion,I think the answer is b.You can control variables more easily by doing different things for different purposes.