Answer:
See the explanation below
Explanation:
This problem can be better understood graphically, so in the attached image we will use a diagram of a positive displacement air pump.
We can see that when she pushes the plunger, we see that the volume decreases.
Answer:

Explanation:
Given


Required
Determine the object's speed
Kinetic Energy is calculated as:

Make m the subject

Momentum is calculated as:

Make m the subject

So, we have:
and 
Equate both expressions: 

Multiply both sides by v


Make v the subject

Substitute
and 



The correct answer is: Average Power = 500 W
Explanation:
Root-mean square voltage = Vrms = Vpeak /√2 = 100 / √2 volts
Resistance = R = 10 Ω
Average power = Pavg = (Vrms)^2<span> / R </span>= (100 * 100) / (2 * 10) = <span>500 W</span>
round the corners of the magnet that where it is stronger
hope this helps :)
Answer:
This will require 266.9 of heat energy.
Explanation:
To calculate the energy required to raise the temperature of any given substance, here's what you require:The mass of the material, m The temperature change that occurs, ΔT The specific heat capacity of the material,
c
(which you can look up). This is the amount of heat required to raise 1 gram of that substance by 1°C.
Here is a source of values of
c for different substances:
Once you have all that, this is the equation:
Q=m×c×ΔT(Q is usually used to symbolize that heat required in a case like this.)For water, the value of c is 4.186g°C So, Q=750×4.186×85=266=858=266.858