Answer:C
Explanation:All of the energy from the Sun that reaches the Earth arrives as solar radiation, part of a large collection of energy called the electromagnetic radiation spectrum. Solar radiation includes visible light, ultraviolet light, infrared, radio waves, X-rays, and gamma rays. Radiation is one way to transfer heat.
This is a non testable question because it cannot be answered by doing an experiment. But it could be modified for example Dogs are more obedient then cats.
Answer:
v = 3×10^8 m/s
s= 384,400 km= 3.84×10^8 m/s
t = ?
v = s/t = 2s/t
t = 2s/v
t = (2×3.84×10^8) ÷ 3×10^8
t = 2.56 seconds
Explanation:
Earth's moon is the brightest object in our
night sky and the closest celestial body. Its
presence and proximity play a huge role in
making life possible here on Earth. The moon's gravitational pull stabilizes Earth's wobble on its axis, leading to a stable climate.
The moon's orbit around Earth is elliptical. At perigee — its closest approach — the moon comes as close as 225,623 miles (363,104 kilometers). At apogee — the farthest away it gets — the moon is 252,088 miles (405,696
km) from Earth. On average, the distance fromEarth to the moon is about 238,855 miles (384,400 km). According to NASA , "That means 30 Earth-sized planets could fit in between Earth and the moon."
Please find attached photograph for your answer. Please do comment whether it is useful or not.
Answer:
Load
Explanation:
A normal power supply can deliver up to certain amount of power to a load. The output power can be calculated multiplying Voltage (V) x Current (A). It happens that after a certain period of time, the power source's main components begin to wear, thus losing its ability to deliver its nominal power. Normally, when no load its connected to the source, you will get the operating Voltage, but when the load demands power, the ability to deliver power to it may fail to reach nominal levels. When connected, there may be voltage drops (thus, less power output) causing malfunctions turning it into a non-operative power supply.